12,561 research outputs found

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    A survey on the development status and application prospects of knowledge graph in smart grids

    Full text link
    With the advent of the electric power big data era, semantic interoperability and interconnection of power data have received extensive attention. Knowledge graph technology is a new method describing the complex relationships between concepts and entities in the objective world, which is widely concerned because of its robust knowledge inference ability. Especially with the proliferation of measurement devices and exponential growth of electric power data empowers, electric power knowledge graph provides new opportunities to solve the contradictions between the massive power resources and the continuously increasing demands for intelligent applications. In an attempt to fulfil the potential of knowledge graph and deal with the various challenges faced, as well as to obtain insights to achieve business applications of smart grids, this work first presents a holistic study of knowledge-driven intelligent application integration. Specifically, a detailed overview of electric power knowledge mining is provided. Then, the overview of the knowledge graph in smart grids is introduced. Moreover, the architecture of the big knowledge graph platform for smart grids and critical technologies are described. Furthermore, this paper comprehensively elaborates on the application prospects leveraged by knowledge graph oriented to smart grids, power consumer service, decision-making in dispatching, and operation and maintenance of power equipment. Finally, issues and challenges are summarised.Comment: IET Generation, Transmission & Distributio

    High-level environment representations for mobile robots

    Get PDF
    In most robotic applications we are faced with the problem of building a digital representation of the environment that allows the robot to autonomously complete its tasks. This internal representation can be used by the robot to plan a motion trajectory for its mobile base and/or end-effector. For most man-made environments we do not have a digital representation or it is inaccurate. Thus, the robot must have the capability of building it autonomously. This is done by integrating into an internal data structure incoming sensor measurements. For this purpose, a common solution consists in solving the Simultaneous Localization and Mapping (SLAM) problem. The map obtained by solving a SLAM problem is called ``metric'' and it describes the geometric structure of the environment. A metric map is typically made up of low-level primitives (like points or voxels). This means that even though it represents the shape of the objects in the robot workspace it lacks the information of which object a surface belongs to. Having an object-level representation of the environment has the advantage of augmenting the set of possible tasks that a robot may accomplish. To this end, in this thesis we focus on two aspects. We propose a formalism to represent in a uniform manner 3D scenes consisting of different geometric primitives, including points, lines and planes. Consequently, we derive a local registration and a global optimization algorithm that can exploit this representation for robust estimation. Furthermore, we present a Semantic Mapping system capable of building an \textit{object-based} map that can be used for complex task planning and execution. Our system exploits effective reconstruction and recognition techniques that require no a-priori information about the environment and can be used under general conditions

    Origins of Modern Data Analysis Linked to the Beginnings and Early Development of Computer Science and Information Engineering

    Get PDF
    The history of data analysis that is addressed here is underpinned by two themes, -- those of tabular data analysis, and the analysis of collected heterogeneous data. "Exploratory data analysis" is taken as the heuristic approach that begins with data and information and seeks underlying explanation for what is observed or measured. I also cover some of the evolving context of research and applications, including scholarly publishing, technology transfer and the economic relationship of the university to society.Comment: 26 page

    Towards holistic scene understanding:Semantic segmentation and beyond

    Get PDF
    This dissertation addresses visual scene understanding and enhances segmentation performance and generalization, training efficiency of networks, and holistic understanding. First, we investigate semantic segmentation in the context of street scenes and train semantic segmentation networks on combinations of various datasets. In Chapter 2 we design a framework of hierarchical classifiers over a single convolutional backbone, and train it end-to-end on a combination of pixel-labeled datasets, improving generalizability and the number of recognizable semantic concepts. Chapter 3 focuses on enriching semantic segmentation with weak supervision and proposes a weakly-supervised algorithm for training with bounding box-level and image-level supervision instead of only with per-pixel supervision. The memory and computational load challenges that arise from simultaneous training on multiple datasets are addressed in Chapter 4. We propose two methodologies for selecting informative and diverse samples from datasets with weak supervision to reduce our networks' ecological footprint without sacrificing performance. Motivated by memory and computation efficiency requirements, in Chapter 5, we rethink simultaneous training on heterogeneous datasets and propose a universal semantic segmentation framework. This framework achieves consistent increases in performance metrics and semantic knowledgeability by exploiting various scene understanding datasets. Chapter 6 introduces the novel task of part-aware panoptic segmentation, which extends our reasoning towards holistic scene understanding. This task combines scene and parts-level semantics with instance-level object detection. In conclusion, our contributions span over convolutional network architectures, weakly-supervised learning, part and panoptic segmentation, paving the way towards a holistic, rich, and sustainable visual scene understanding.Comment: PhD Thesis, Eindhoven University of Technology, October 202
    corecore