108 research outputs found

    Block-level test scheduling under power dissipation constraints

    Get PDF
    As dcvicc technologies such as VLSI and Multichip Module (MCM) become mature, and larger and denser memory ICs arc implemented for high-performancc digital systems, power dissipation becomes a critical factor and can no longer be ignored cither in normal operation of the system or under test conditions. One of the major considerations in test scheduling is the fact that heat dissipated during test application is significantly higher than during normal operation (sometimes 100 - 200% higher). Therefore, this is one of the recent major considerations in test scheduling. Test scheduling is strongly related to test concurrency. Test concurrency is a design property which strongly impacts testability and power dissipation. To satisfy high fault coverage goals with reduced test application time under certain power dissipation constraints, the testing of all components on the system should be performed m parallel to the greatest extent possible. Some theoretical analysis of this problem has been carried out, but only at IC level. The problem was basically described as a compatible test clustering, where the compatibility among tests was given by test resource and power dissipation conflicts at the same time. From an implementation point of view this problem was identified as an Non-Polynomial (NP) complete problem In this thesis, an efficient scheme for overlaying the block-tcsts, called the extended tree growing technique, is proposed together with classical scheduling algorithms to search for power-constrained blocktest scheduling (PTS) profiles m a polynomial time Classical algorithms like listbased scheduling and distribution-graph based scheduling arc employed to tackle at high level the PTS problem. This approach exploits test parallelism under power constraints. This is achieved by overlaying the block-tcst intervals of compatible subcircuits to test as many of them as possible concurrently so that the maximum accumulated power dissipation is balanced and does not exceed the given limit. The test scheduling discipline assumed here is the partitioned testing with run to completion. A constant additive model is employed for power dissipation analysis and estimation throughout the algorithm

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges

    Full text link
    Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy

    From experiment to design – fault characterization and detection in parallel computer systems using computational accelerators

    Get PDF
    This dissertation summarizes experimental validation and co-design studies conducted to optimize the fault detection capabilities and overheads in hybrid computer systems (e.g., using CPUs and Graphics Processing Units, or GPUs), and consequently to improve the scalability of parallel computer systems using computational accelerators. The experimental validation studies were conducted to help us understand the failure characteristics of CPU-GPU hybrid computer systems under various types of hardware faults. The main characterization targets were faults that are difficult to detect and/or recover from, e.g., faults that cause long latency failures (Ch. 3), faults in dynamically allocated resources (Ch. 4), faults in GPUs (Ch. 5), faults in MPI programs (Ch. 6), and microarchitecture-level faults with specific timing features (Ch. 7). The co-design studies were based on the characterization results. One of the co-designed systems has a set of source-to-source translators that customize and strategically place error detectors in the source code of target GPU programs (Ch. 5). Another co-designed system uses an extension card to learn the normal behavioral and semantic execution patterns of message-passing processes executing on CPUs, and to detect abnormal behaviors of those parallel processes (Ch. 6). The third co-designed system is a co-processor that has a set of new instructions in order to support software-implemented fault detection techniques (Ch. 7). The work described in this dissertation gains more importance because heterogeneous processors have become an essential component of state-of-the-art supercomputers. GPUs were used in three of the five fastest supercomputers that were operating in 2011. Our work included comprehensive fault characterization studies in CPU-GPU hybrid computers. In CPUs, we monitored the target systems for a long period of time after injecting faults (a temporally comprehensive experiment), and injected faults into various types of program states that included dynamically allocated memory (to be spatially comprehensive). In GPUs, we used fault injection studies to demonstrate the importance of detecting silent data corruption (SDC) errors that are mainly due to the lack of fine-grained protections and the massive use of fault-insensitive data. This dissertation also presents transparent fault tolerance frameworks and techniques that are directly applicable to hybrid computers built using only commercial off-the-shelf hardware components. This dissertation shows that by developing understanding of the failure characteristics and error propagation paths of target programs, we were able to create fault tolerance frameworks and techniques that can quickly detect and recover from hardware faults with low performance and hardware overheads

    Air Traffic Management Abbreviation Compendium

    Get PDF
    As in all fields of work, an unmanageable number of abbreviations are used today in aviation for terms, definitions, commands, standards and technical descriptions. This applies in general to the areas of aeronautical communication, navigation and surveillance, cockpit and air traffic control working positions, passenger and cargo transport, and all other areas of flight planning, organization and guidance. In addition, many abbreviations are used more than once or have different meanings in different languages. In order to obtain an overview of the most common abbreviations used in air traffic management, organizations like EUROCONTROL, FAA, DWD and DLR have published lists of abbreviations in the past, which have also been enclosed in this document. In addition, abbreviations from some larger international projects related to aviation have been included to provide users with a directory as complete as possible. This means that the second edition of the Air Traffic Management Abbreviation Compendium includes now around 16,500 abbreviations and acronyms from the field of aviation

    Assessing the evidential value of artefacts recovered from the cloud

    Get PDF
    Cloud computing offers users low-cost access to computing resources that are scalable and flexible. However, it is not without its challenges, especially in relation to security. Cloud resources can be leveraged for criminal activities and the architecture of the ecosystem makes digital investigation difficult in terms of evidence identification, acquisition and examination. However, these same resources can be leveraged for the purposes of digital forensics, providing facilities for evidence acquisition, analysis and storage. Alternatively, existing forensic capabilities can be used in the Cloud as a step towards achieving forensic readiness. Tools can be added to the Cloud which can recover artefacts of evidential value. This research investigates whether artefacts that have been recovered from the Xen Cloud Platform (XCP) using existing tools have evidential value. To determine this, it is broken into three distinct areas: adding existing tools to a Cloud ecosystem, recovering artefacts from that system using those tools and then determining the evidential value of the recovered artefacts. From these experiments, three key steps for adding existing tools to the Cloud were determined: the identification of the specific Cloud technology being used, identification of existing tools and the building of a testbed. Stemming from this, three key components of artefact recovery are identified: the user, the audit log and the Virtual Machine (VM), along with two methodologies for artefact recovery in XCP. In terms of evidential value, this research proposes a set of criteria for the evaluation of digital evidence, stating that it should be authentic, accurate, reliable and complete. In conclusion, this research demonstrates the use of these criteria in the context of digital investigations in the Cloud and how each is met. This research shows that it is possible to recover artefacts of evidential value from XCP

    Transition in Monitoring and Network Offloading - Handling Dynamic Mobile Applications and Environments

    Get PDF
    Communication demands increased significantly in recent years, as evidenced in studies by Cisco and Ericsson. Users demand connectivity anytime and anywhere, while new application domains such as the Internet of Things and vehicular networking, amplify heterogeneity and dynamics of the resource-constrained environment of mobile networks. These developments pose major challenges to an efficient utilization of existing communication infrastructure. To reduce the burden on the communication infrastructure, mechanisms for network offloading can be utilized. However, to deal with the dynamics of new application scenarios, these mechanisms need to be highly adaptive. Gathering information about the current status of the network is a fundamental requirement for meaningful adaptation. This requires network monitoring mechanisms that are able to operate under the same highly dynamic environmental conditions and changing requirements. In this thesis, we design and realize a concept for transitions within network offloading to handle the former challenges, which constitutes our first contribution. We enable adaptive offloading by introducing a methodology for the identification and encapsulation of gateway selection and clustering mechanisms in the transition-enabled service AssignMe.KOM. To handle the dynamics of environmental conditions, we allow for centralized and decentralized offloading. We generalize and show the significant impact of our concept of transitions within offloading in various, heterogeneous applications domains such as vehicular networking or publish/subscribe. We extend the methodology of identification and encapsulation to the domain of network monitoring in our second contribution. Our concept of a transition-enabled monitoring service AdaptMon.KOM enables adaptive network state observation by executing transitions between monitoring mechanisms. We introduce extensive transition coordination concepts for reconfiguration in both of our contributions. To prevent data loss during complex transition plans that cover multiple coexisting transition-enabled mechanisms, we develop the methodology of inter-proxy state transfer. We target the coexistence of our contributions for the use case of collaborative location retrieval on the example of location-based services. Based on our prototypes of AssignMe.KOM and AdaptMon.KOM, we conduct an extensive evaluation of our contributions in the Simonstrator.KOM platform. We show that our proposed inter-proxy state transfer prevents information loss, enabling seamless execution of complex transition plans that cover multiple coexisting transition-enabled mechanisms. Additionally, we demonstrate the influence of transition coordination and spreading on the success of the network adaptation. We manifest a cost-efficient and reliable methodology for location retrieval by combining our transition-enabled contributions. We show that our contributions allow for adaption on dynamic environmental conditions and requirements in network offloading and monitoring
    corecore