32 research outputs found

    Analysing observer preferences when presenting a product in a rendered scene: 2D vs. autostereoscopic 3D displays

    Get PDF
    This research compares the way the image of a product included within a rendered scene shown on an autostereoscopic 3D display is rated versus the same image shown in a 2D display. The purpose is to understand the observer's preferences and to determine the features that a composition should have to highlight the product and to make its presentation more attractive to observers, thereby helping designers and advertisers who use both displays to prepare images to make them more effective when visually presenting a product. The results show that observers like the images on autostereoscopic 3D displays slightly more than those presented by means of 2D displays. On both displays the product is perceived more quickly when it is larger than the other elements and is shown with greater chromatic contrast, but a composition is seen as more attractive when the chromatic relationship between all the elements is more harmonious

    Optical simulation, modeling and evaluation of 3D medical displays

    Get PDF

    Perceptually Optimized Visualization on Autostereoscopic 3D Displays

    Get PDF
    The family of displays, which aims to visualize a 3D scene with realistic depth, are known as "3D displays". Due to technical limitations and design decisions, such displays create visible distortions, which are interpreted by the human vision as artefacts. In absence of visual reference (e.g. the original scene is not available for comparison) one can improve the perceived quality of the representations by making the distortions less visible. This thesis proposes a number of signal processing techniques for decreasing the visibility of artefacts on 3D displays. The visual perception of depth is discussed, and the properties (depth cues) of a scene which the brain uses for assessing an image in 3D are identified. Following the physiology of vision, a taxonomy of 3D artefacts is proposed. The taxonomy classifies the artefacts based on their origin and on the way they are interpreted by the human visual system. The principles of operation of the most popular types of 3D displays are explained. Based on the display operation principles, 3D displays are modelled as a signal processing channel. The model is used to explain the process of introducing distortions. It also allows one to identify which optical properties of a display are most relevant to the creation of artefacts. A set of optical properties for dual-view and multiview 3D displays are identified, and a methodology for measuring them is introduced. The measurement methodology allows one to derive the angular visibility and crosstalk of each display element without the need for precision measurement equipment. Based on the measurements, a methodology for creating a quality profile of 3D displays is proposed. The quality profile can be either simulated using the angular brightness function or directly measured from a series of photographs. A comparative study introducing the measurement results on the visual quality and position of the sweet-spots of eleven 3D displays of different types is presented. Knowing the sweet-spot position and the quality profile allows for easy comparison between 3D displays. The shape and size of the passband allows depth and textures of a 3D content to be optimized for a given 3D display. Based on knowledge of 3D artefact visibility and an understanding of distortions introduced by 3D displays, a number of signal processing techniques for artefact mitigation are created. A methodology for creating anti-aliasing filters for 3D displays is proposed. For multiview displays, the methodology is extended towards so-called passband optimization which addresses Moiré, fixed-pattern-noise and ghosting artefacts, which are characteristic for such displays. Additionally, design of tuneable anti-aliasing filters is presented, along with a framework which allows the user to select the so-called 3d sharpness parameter according to his or her preferences. Finally, a set of real-time algorithms for view-point-based optimization are presented. These algorithms require active user-tracking, which is implemented as a combination of face and eye-tracking. Once the observer position is known, the image on a stereoscopic display is optimised for the derived observation angle and distance. For multiview displays, the combination of precise light re-direction and less-precise face-tracking is used for extending the head parallax. For some user-tracking algorithms, implementation details are given, regarding execution of the algorithm on a mobile device or on desktop computer with graphical accelerator

    Rendering and display for multi-viewer tele-immersion

    Get PDF
    Video teleconferencing systems are widely deployed for business, education and personal use to enable face-to-face communication between people at distant sites. Unfortunately, the two-dimensional video of conventional systems does not correctly convey several important non-verbal communication cues such as eye contact and gaze awareness. Tele-immersion refers to technologies aimed at providing distant users with a more compelling sense of remote presence than conventional video teleconferencing. This dissertation is concerned with the particular challenges of interaction between groups of users at remote sites. The problems of video teleconferencing are exacerbated when groups of people communicate. Ideally, a group tele-immersion system would display views of the remote site at the right size and location, from the correct viewpoint for each local user. However, is is not practical to put a camera in every possible eye location, and it is not clear how to provide each viewer with correct and unique imagery. I introduce rendering techniques and multi-view display designs to support eye contact and gaze awareness between groups of viewers at two distant sites. With a shared 2D display, virtual camera views can improve local spatial cues while preserving scene continuity, by rendering the scene from novel viewpoints that may not correspond to a physical camera. I describe several techniques, including a compact light field, a plane sweeping algorithm, a depth dependent camera model, and video-quality proxies, suitable for producing useful views of a remote scene for a group local viewers. The first novel display provides simultaneous, unique monoscopic views to several users, with fewer user position restrictions than existing autostereoscopic displays. The second is a random hole barrier autostereoscopic display that eliminates the viewing zones and user position requirements of conventional autostereoscopic displays, and provides unique 3D views for multiple users in arbitrary locations

    Panorama Generation for Stereoscopic Visualization of Large-Scale Scenes

    Full text link
    In this thesis, we address the problem of modeling and stereoscopically visualizing large-scale scenes captured with a single moving camera. In many applications that image large-scale scenes the critical information desired is the 3D spatial information of stationary objects and movers within the scene. Stereo panoramas, like regular panoramas, provide a wide field-of-view that can represent the entire scene, with the stereo panoramas additionally representing the motion parallax and allowing for 3D visualization and reconstruction of the scene. The primary issue with stereo panorama construction methods is that they are constrained for a particular camera motion model; typically the camera is constrained to move along a linear or circular path. Here we present a method for constructing stereo panoramas for general camera motion, and we develop a (1) Unified Stereo Mosaic Framework that handles general camera motion models. To construct stereo panoramas for general motion we created a new (2) Stereo Mosaic Layering algorithm that speeds up panorama construction enabling real-time applications. In large-scale scene applications it is often the case that the scene will be imaged persistently by passing over the same path multiple times or two or more sensors of different modalities will pass over the the same scene. To address these issues we developed methods for (3) Multi-Run and Multi-Modal Mosaic Alignment. Finally, we developed an (4) Intelligent Stereo Visualization that allows a viewer to interact and stereoscopically view the stereo panoramas developed from general motion

    Roadmap on 3D integral imaging: Sensing, processing, and display

    Get PDF
    This Roadmap article on three-dimensional integral imaging provides an overview of some of the research activities in the field of integral imaging. The article discusses various aspects of the field including sensing of 3D scenes, processing of captured information, and 3D display and visualization of information. The paper consists of a series of 15 sections from the experts presenting various aspects of the field on sensing, processing, displays, augmented reality, microscopy, object recognition, and other applications. Each section represents the vision of its author to describe the progress, potential, vision, and challenging issues in this field
    corecore