1,602 research outputs found

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    Language integrated relational lenses

    Get PDF
    Relational databases are ubiquitous. Such monolithic databases accumulate large amounts of data, yet applications typically only work on small portions of the data at a time. A subset of the database defined as a computation on the underlying tables is called a view. Querying views is helpful, but it is also desirable to update them and have these changes be applied to the underlying database. This view update problem has been the subject of much previous work before, but support by database servers is limited and only rarely available. Lenses are a popular approach to bidirectional transformations, a generalization of the view update problem in databases to arbitrary data. However, perhaps surprisingly, lenses have seldom actually been used to implement updatable views in databases. Bohannon, Pierce and Vaughan propose an approach to updatable views called relational lenses. However, to the best of our knowledge this proposal has not been implemented or evaluated prior to the work reported in this thesis. This thesis proposes programming language support for relational lenses. Language integrated relational lenses support expressive and efficient view updates, without relying on updatable view support from the database server. By integrating relational lenses into the programming language, application development becomes easier and less error-prone, avoiding the impedance mismatch of having two programming languages. Integrating relational lenses into the language poses additional challenges. As defined by Bohannon et al. relational lenses completely recompute the database, making them inefficient as the database scales. The other challenge is that some parts of the well-formedness conditions are too general for implementation. Bohannon et al. specify predicates using possibly infinite abstract sets and define the type checking rules using relational algebra. Incremental relational lenses equip relational lenses with change-propagating semantics that map small changes to the view into (potentially) small changes to the source tables. We prove that our incremental semantics are functionally equivalent to the non-incremental semantics, and our experimental results show orders of magnitude improvement over the non-incremental approach. This thesis introduces a concrete predicate syntax and shows how the required checks are performed on these predicates and show that they satisfy the abstract predicate specifications. We discuss trade-offs between static predicates that are fully known at compile time vs dynamic predicates that are only known during execution and introduce hybrid predicates taking inspiration from both approaches. This thesis adapts the typing rules for relational lenses from sequential composition to a functional style of sub-expressions. We prove that any well-typed functional relational lens expression can derive a well-typed sequential lens. We use these additions to relational lenses as the foundation for two practical implementations: an extension of the Links functional language and a library written in Haskell. The second implementation demonstrates how type-level computation can be used to implement relational lenses without changes to the compiler. These two implementations attest to the possibility of turning relational lenses into a practical language feature

    Guided rewriting and constraint satisfaction for parallel GPU code generation

    Get PDF
    Graphics Processing Units (GPUs) are notoriously hard to optimise for manually due to their scheduling and memory hierarchies. What is needed are good automatic code generators and optimisers for such parallel hardware. Functional approaches such as Accelerate, Futhark and LIFT leverage a high-level algorithmic Intermediate Representation (IR) to expose parallelism and abstract the implementation details away from the user. However, producing efficient code for a given accelerator remains challenging. Existing code generators depend on the user input to choose a subset of hard-coded optimizations or automated exploration of implementation search space. The former suffers from the lack of extensibility, while the latter is too costly due to the size of the search space. A hybrid approach is needed, where a space of valid implementations is built automatically and explored with the aid of human expertise. This thesis presents a solution combining user-guided rewriting and automatically generated constraints to produce high-performance code. The first contribution is an automatic tuning technique to find a balance between performance and memory consumption. Leveraging its functional patterns, the LIFT compiler is empowered to infer tuning constraints and limit the search to valid tuning combinations only. Next, the thesis reframes parallelisation as a constraint satisfaction problem. Parallelisation constraints are extracted automatically from the input expression, and a solver is used to identify valid rewriting. The constraints truncate the search space to valid parallel mappings only by capturing the scheduling restrictions of the GPU in the context of a given program. A synchronisation barrier insertion technique is proposed to prevent data races and improve the efficiency of the generated parallel mappings. The final contribution of this thesis is the guided rewriting method, where the user encodes a design space of structural transformations using high-level IR nodes called rewrite points. These strongly typed pragmas express macro rewrites and expose design choices as explorable parameters. The thesis proposes a small set of reusable rewrite points to achieve tiling, cache locality, data reuse and memory optimisation. A comparison with the vendor-provided handwritten kernel ARM Compute Library and the TVM code generator demonstrates the effectiveness of this thesis' contributions. With convolution as a use case, LIFT-generated direct and GEMM-based convolution implementations are shown to perform on par with the state-of-the-art solutions on a mobile GPU. Overall, this thesis demonstrates that a functional IR yields well to user-guided and automatic rewriting for high-performance code generation

    Sidekick compilation with xDSL

    Full text link
    Traditionally, compiler researchers either conduct experiments within an existing production compiler or develop their own prototype compiler; both options come with trade-offs. On one hand, prototyping in a production compiler can be cumbersome, as they are often optimized for program compilation speed at the expense of software simplicity and development speed. On the other hand, the transition from a prototype compiler to production requires significant engineering work. To bridge this gap, we introduce the concept of sidekick compiler frameworks, an approach that uses multiple frameworks that interoperate with each other by leveraging textual interchange formats and declarative descriptions of abstractions. Each such compiler framework is specialized for specific use cases, such as performance or prototyping. Abstractions are by design shared across frameworks, simplifying the transition from prototyping to production. We demonstrate this idea with xDSL, a sidekick for MLIR focused on prototyping and teaching. xDSL interoperates with MLIR through a shared textual IR and the exchange of IRs through an IR Definition Language. The benefits of sidekick compiler frameworks are evaluated by showing on three use cases how xDSL impacts their development: teaching, DSL compilation, and rewrite system prototyping. We also investigate the trade-offs that xDSL offers, and demonstrate how we simplify the transition between frameworks using the IRDL dialect. With sidekick compilation, we envision a future in which engineers minimize the cost of development by choosing a framework built for their immediate needs, and later transitioning to production with minimal overhead

    Towards A Practical High-Assurance Systems Programming Language

    Full text link
    Writing correct and performant low-level systems code is a notoriously demanding job, even for experienced developers. To make the matter worse, formally reasoning about their correctness properties introduces yet another level of complexity to the task. It requires considerable expertise in both systems programming and formal verification. The development can be extremely costly due to the sheer complexity of the systems and the nuances in them, if not assisted with appropriate tools that provide abstraction and automation. Cogent is designed to alleviate the burden on developers when writing and verifying systems code. It is a high-level functional language with a certifying compiler, which automatically proves the correctness of the compiled code and also provides a purely functional abstraction of the low-level program to the developer. Equational reasoning techniques can then be used to prove functional correctness properties of the program on top of this abstract semantics, which is notably less laborious than directly verifying the C code. To make Cogent a more approachable and effective tool for developing real-world systems, we further strengthen the framework by extending the core language and its ecosystem. Specifically, we enrich the language to allow users to control the memory representation of algebraic data types, while retaining the automatic proof with a data layout refinement calculus. We repurpose existing tools in a novel way and develop an intuitive foreign function interface, which provides users a seamless experience when using Cogent in conjunction with native C. We augment the Cogent ecosystem with a property-based testing framework, which helps developers better understand the impact formal verification has on their programs and enables a progressive approach to producing high-assurance systems. Finally we explore refinement type systems, which we plan to incorporate into Cogent for more expressiveness and better integration of systems programmers with the verification process

    Tools for efficient Deep Learning

    Get PDF
    In the era of Deep Learning (DL), there is a fast-growing demand for building and deploying Deep Neural Networks (DNNs) on various platforms. This thesis proposes five tools to address the challenges for designing DNNs that are efficient in time, in resources and in power consumption. We first present Aegis and SPGC to address the challenges in improving the memory efficiency of DL training and inference. Aegis makes mixed precision training (MPT) stabler by layer-wise gradient scaling. Empirical experiments show that Aegis can improve MPT accuracy by at most 4\%. SPGC focuses on structured pruning: replacing standard convolution with group convolution (GConv) to avoid irregular sparsity. SPGC formulates GConv pruning as a channel permutation problem and proposes a novel heuristic polynomial-time algorithm. Common DNNs pruned by SPGC have maximally 1\% higher accuracy than prior work. This thesis also addresses the challenges lying in the gap between DNN descriptions and executables by Polygeist for software and POLSCA for hardware. Many novel techniques, e.g. statement splitting and memory partitioning, are explored and used to expand polyhedral optimisation. Polygeist can speed up software execution in sequential and parallel by 2.53 and 9.47 times on Polybench/C. POLSCA achieves 1.5 times speedup over hardware designs directly generated from high-level synthesis on Polybench/C. Moreover, this thesis presents Deacon, a framework that generates FPGA-based DNN accelerators of streaming architectures with advanced pipelining techniques to address the challenges from heterogeneous convolution and residual connections. Deacon provides fine-grained pipelining, graph-level optimisation, and heuristic exploration by graph colouring. Compared with prior designs, Deacon shows resource/power consumption efficiency improvement of 1.2x/3.5x for MobileNets and 1.0x/2.8x for SqueezeNets. All these tools are open source, some of which have already gained public engagement. We believe they can make efficient deep learning applications easier to build and deploy.Open Acces

    Test Flakiness Prediction Techniques for Evolving Software Systems

    Get PDF

    Exploring annotations for deductive verification

    Get PDF

    Development and implementation of in silico molecule fragmentation algorithms for the cheminformatics analysis of natural product spaces

    Get PDF
    Computational methodologies extracting specific substructures like functional groups or molecular scaffolds from input molecules can be grouped under the term “in silico molecule fragmentation”. They can be used to investigate what specifically characterises a heterogeneous compound class, like pharmaceuticals or Natural Products (NP) and in which aspects they are similar or dissimilar. The aim is to determine what specifically characterises NP structures to transfer patterns favourable for bioactivity to drug development. As part of this thesis, the first algorithmic approach to in silico deglycosylation, the removal of glycosidic moieties for the study of aglycones, was developed with the Sugar Removal Utility (SRU) (Publication A). The SRU has also proven useful for investigating NP glycoside space. It was applied to one of the largest open NP databases, COCONUT (COlleCtion of Open Natural prodUcTs), for this purpose (Publication B). A contribution was made to the Chemistry Development Kit (CDK) by developing the open Scaffold Generator Java library (Publication C). Scaffold Generator can extract different scaffold types and dissect them into smaller parent scaffolds following the scaffold tree or scaffold network approach. Publication D describes the OngLai algorithm, the first automated method to identify homologous series in input datasets, group the member structures of each group, and extract their common core. To support the development of new fragmentation algorithms, the open Java rich client graphical user interface application MORTAR (MOlecule fRagmenTAtion fRamework) was developed as part of this thesis (Publication E). MORTAR allows users to quickly execute the steps of importing a structural dataset, applying a fragmentation algorithm, and visually inspecting the results in different ways. All software developed as part of this thesis is freely and openly available (see https://github.com/JonasSchaub)
    • 

    corecore