308 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Cooperative Convex Optimization in Networked Systems: Augmented Lagrangian Algorithms with Directed Gossip Communication

    Full text link
    We study distributed optimization in networked systems, where nodes cooperate to find the optimal quantity of common interest, x=x^\star. The objective function of the corresponding optimization problem is the sum of private (known only by a node,) convex, nodes' objectives and each node imposes a private convex constraint on the allowed values of x. We solve this problem for generic connected network topologies with asymmetric random link failures with a novel distributed, decentralized algorithm. We refer to this algorithm as AL-G (augmented Lagrangian gossiping,) and to its variants as AL-MG (augmented Lagrangian multi neighbor gossiping) and AL-BG (augmented Lagrangian broadcast gossiping.) The AL-G algorithm is based on the augmented Lagrangian dual function. Dual variables are updated by the standard method of multipliers, at a slow time scale. To update the primal variables, we propose a novel, Gauss-Seidel type, randomized algorithm, at a fast time scale. AL-G uses unidirectional gossip communication, only between immediate neighbors in the network and is resilient to random link failures. For networks with reliable communication (i.e., no failures,) the simplified, AL-BG (augmented Lagrangian broadcast gossiping) algorithm reduces communication, computation and data storage cost. We prove convergence for all proposed algorithms and demonstrate by simulations the effectiveness on two applications: l_1-regularized logistic regression for classification and cooperative spectrum sensing for cognitive radio networks.Comment: 28 pages, journal; revise

    Optimization of Mobility Parameters using Fuzzy Logic and Reinforcement Learning in Self-Organizing Networks

    Get PDF
    In this thesis, several optimization techniques for next-generation wireless networks are proposed to solve different problems in the field of Self-Organizing Networks and heterogeneous networks. The common basis of these problems is that network parameters are automatically tuned to deal with the specific problem. As the set of network parameters is extremely large, this work mainly focuses on parameters involved in mobility management. In addition, the proposed self-tuning schemes are based on Fuzzy Logic Controllers (FLC), whose potential lies in the capability to express the knowledge in a similar way to the human perception and reasoning. In addition, in those cases in which a mathematical approach has been required to optimize the behavior of the FLC, the selected solution has been Reinforcement Learning, since this methodology is especially appropriate for learning from interaction, which becomes essential in complex systems such as wireless networks. Taking this into account, firstly, a new Mobility Load Balancing (MLB) scheme is proposed to solve persistent congestion problems in next-generation wireless networks, in particular, due to an uneven spatial traffic distribution, which typically leads to an inefficient usage of resources. A key feature of the proposed algorithm is that not only the parameters are optimized, but also the parameter tuning strategy. Secondly, a novel MLB algorithm for enterprise femtocells scenarios is proposed. Such scenarios are characterized by the lack of a thorough deployment of these low-cost nodes, meaning that a more efficient use of radio resources can be achieved by applying effective MLB schemes. As in the previous problem, the optimization of the self-tuning process is also studied in this case. Thirdly, a new self-tuning algorithm for Mobility Robustness Optimization (MRO) is proposed. This study includes the impact of context factors such as the system load and user speed, as well as a proposal for coordination between the designed MLB and MRO functions. Fourthly, a novel self-tuning algorithm for Traffic Steering (TS) in heterogeneous networks is proposed. The main features of the proposed algorithm are the flexibility to support different operator policies and the adaptation capability to network variations. Finally, with the aim of validating the proposed techniques, a dynamic system-level simulator for Long-Term Evolution (LTE) networks has been designed

    STOCHASTIC MODELING AND TIME-TO-EVENT ANALYSIS OF VOIP TRAFFIC

    Get PDF
    Voice over IP (VoIP) systems are gaining increased popularity due to the cost effectiveness, ease of management, and enhanced features and capabilities. Both enterprises and carriers are deploying VoIP systems to replace their TDM-based legacy voice networks. However, the lack of engineering models for VoIP systems has been realized by many researchers, especially for large-scale networks. The purpose of traffic engineering is to minimize call blocking probability and maximize resource utilization. The current traffic engineering models are inherited from the legacy PSTN world, and these models fall short from capturing the characteristics of new traffic patterns. The objective of this research is to develop a traffic engineering model for modern VoIP networks. We studied the traffic on a large-scale VoIP network and collected several billions of call information. Our analysis shows that the traditional traffic engineering approach based on the Poisson call arrival process and exponential holding time fails to capture the modern telecommunication systems accurately. We developed a new framework for modeling call arrivals as a non-homogeneous Poisson process, and we further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic condition on large-scale networks. In the second phase of the research, we followed a new time-to-event survival analysis approach to model call holding time as a generalized gamma distribution and we introduced a Call Cease Rate function to model the call durations. The modeling and statistical work of the Call Arrival model and the Call Holding Time model is constructed, verified and validated using hundreds of millions of real call information collected from an operational VoIP carrier network. The traffic data is a mixture of residential, business, and wireless traffic. Therefore, our proposed models can be applied to any modern telecommunication system. We also conducted sensitivity analysis of model parameters and performed statistical tests on the robustness of the models’ assumptions. We implemented the models in a new simulation-based traffic engineering system called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic techniques were used in building VSIM system. The core of VSIM is a simulation system that consists of two different simulation engines: the NHPP parametric simulation engine and the non-parametric simulation engine. In addition, VSIM provides several subsystems for traffic data collection, processing, statistical modeling, model parameter estimation, graph generation, and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network, processing and storing the extracted information, and then feeding it into one of the simulation engines which in turn provides resource optimization and quality of service reports

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A Novel UAV-Aided Network Architecture Using Wi-Fi Direct

    Get PDF
    The use of unmanned aerial vehicles (UAVs) in future wireless networks is gaining attention due to their quick deployment without requiring the existing infrastructure. Earlier studies on UAV-aided communication consider generic scenarios, and very few studies exist on the evaluation of UAV-aided communication in practical networks. The existing studies also have several limitations, and hence, an extensive evaluation of the benefits of UAV communication in practical networks is needed. In this paper, we proposed a UAV-aided Wi-Fi Direct network architecture. In the proposed architecture, a UAV equipped with a Wi-Fi Direct group owner (GO) device, the so-called Soft-AP, is deployed in the network to serve a set of Wi-Fi stations. We propose to use a simpler yet efficient algorithm for the optimal placement of the UAV. The proposed algorithm dynamically places the UAV in the network to reduce the distance between the GO and client devices. The expected benefits of the proposed scheme are to maintain the connectivity of client devices to increase the overall network throughput and to improve energy efficiency. As a proof of concept, realistic simulations are performed in the NS-3 network simulator to validate the claimed benefits of the proposed scheme. The simulation results report major improvements of 23% in client association, 54% in network throughput, and 33% in energy consumption using single UAV relative to the case of stationary or randomly moving GO. Further improvements are achieved by increasing the number of UAVs in the network. To the best of our knowledge, no prior work exists on the evaluation of the UAV-aided Wi-Fi Direct networks.This work was supported by the NPRP through the Qatar National Research Fund (a member of Qatar Foundation) under Grant NPRP 8-627-2-260.Scopu

    Structure and topology of transcriptional regulatory networks and their applications in bio-inspired networking

    Get PDF
    Biological networks carry out vital functions necessary for sustenance despite environmental adversities. Transcriptional Regulatory Network (TRN) is one such biological network that is formed due to the interaction between proteins, called Transcription Factors (TFs), and segments of DNA, called genes. TRNs are known to exhibit functional robustness in the face of perturbation or mutation: a property that is proven to be a result of its underlying network topology. In this thesis, we first propose a three-tier topological characterization of TRN to analyze the interplay between the significant graph-theoretic properties of TRNs such as scale-free out-degree distribution, low graph density, small world property and the abundance of subgraphs called motifs. Specifically, we pinpoint the role of a certain three-node motif, called Feed Forward Loop (FFL) motif in topological robustness as well as information spread in TRNs. With the understanding of the TRN topology, we explore its potential use in design of fault-tolerant communication topologies. To this end, we first propose an edge rewiring mechanism that remedies the vulnerability of TRNs to the failure of well-connected nodes, called hubs, while preserving its other significant graph-theoretic properties. We apply the rewired TRN topologies in the design of wireless sensor networks that are less vulnerable to targeted node failure. Similarly, we apply the TRN topology to address the issues of robustness and energy-efficiency in the following networking paradigms: robust yet energy-efficient delay tolerant network for post disaster scenarios, energy-efficient data-collection framework for smart city applications and a data transfer framework deployed over a fog computing platform for collaborative sensing --Abstract, page iii
    • …
    corecore