55,056 research outputs found

    Hybrid finite difference/finite element immersed boundary method

    Get PDF
    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach employs a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach

    Arbitrary-Lagrangian-Eulerian discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    Get PDF
    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes. High order piecewise polynomials are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Our numerical method belongs to the category of direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry directly during the computation of the numerical fluxes. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method, in which the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed with a second order TVD finite volume scheme. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).Comment: 39 pages, 21 figure

    Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes

    Full text link
    In this article we present a new class of high order accurate Arbitrary-Eulerian-Lagrangian (ALE) one-step WENO finite volume schemes for solving nonlinear hyperbolic systems of conservation laws on moving two dimensional unstructured triangular meshes. A WENO reconstruction algorithm is used to achieve high order accuracy in space and a high order one-step time discretization is achieved by using the local space-time Galerkin predictor. For that purpose, a new element--local weak formulation of the governing PDE is adopted on moving space--time elements. The space-time basis and test functions are obtained considering Lagrange interpolation polynomials passing through a predefined set of nodes. Moreover, a polynomial mapping defined by the same local space-time basis functions as the weak solution of the PDE is used to map the moving physical space-time element onto a space-time reference element. To maintain algorithmic simplicity, the final ALE one-step finite volume scheme uses moving triangular meshes with straight edges. This is possible in the ALE framework, which allows a local mesh velocity that is different from the local fluid velocity. We present numerical convergence rates for the schemes presented in this paper up to sixth order of accuracy in space and time and show some classical numerical test problems for the two-dimensional Euler equations of compressible gas dynamics.Comment: Accepted by "Communications in Computational Physics

    Generating admissible space-time meshes for moving domains in d+1d+1-dimensions

    Full text link
    In this paper we present a discontinuous Galerkin finite element method for the solution of the transient Stokes equations on moving domains. For the discretization we use an interior penalty Galerkin approach in space, and an upwind technique in time. The method is based on a decomposition of the space-time cylinder into finite elements. Our focus lies on three-dimensional moving geometries, thus we need to triangulate four dimensional objects. For this we will present an algorithm to generate d+1d+1-dimensional simplex space-time meshes and we show under natural assumptions that the resulting space-time meshes are admissible. Further we will show how one can generate a four-dimensional object resolving the domain movement. First numerical results for the transient Stokes equations on triangulations generated with the newly developed meshing algorithm are presented

    A monolithic fluid-structure interaction formulation for solid and liquid membranes including free-surface contact

    Full text link
    A unified fluid-structure interaction (FSI) formulation is presented for solid, liquid and mixed membranes. Nonlinear finite elements (FE) and the generalized-alpha scheme are used for the spatial and temporal discretization. The membrane discretization is based on curvilinear surface elements that can describe large deformations and rotations, and also provide a straightforward description for contact. The fluid is described by the incompressible Navier-Stokes equations, and its discretization is based on stabilized Petrov-Galerkin FE. The coupling between fluid and structure uses a conforming sharp interface discretization, and the resulting non-linear FE equations are solved monolithically within the Newton-Raphson scheme. An arbitrary Lagrangian-Eulerian formulation is used for the fluid in order to account for the mesh motion around the structure. The formulation is very general and admits diverse applications that include contact at free surfaces. This is demonstrated by two analytical and three numerical examples exhibiting strong coupling between fluid and structure. The examples include balloon inflation, droplet rolling and flapping flags. They span a Reynolds-number range from 0.001 to 2000. One of the examples considers the extension to rotation-free shells using isogeometric FE.Comment: 38 pages, 17 figure

    High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows

    Full text link
    In this article we present the first better than second order accurate unstructured Lagrangian-type one-step WENO finite volume scheme for the solution of hyperbolic partial differential equations with non-conservative products. The method achieves high order of accuracy in space together with essentially non-oscillatory behavior using a nonlinear WENO reconstruction operator on unstructured triangular meshes. High order accuracy in time is obtained via a local Lagrangian space-time Galerkin predictor method that evolves the spatial reconstruction polynomials in time within each element. The final one-step finite volume scheme is derived by integration over a moving space-time control volume, where the non-conservative products are treated by a path-conservative approach that defines the jump terms on the element boundaries. The entire method is formulated as an Arbitrary-Lagrangian-Eulerian (ALE) method, where the mesh velocity can be chosen independently of the fluid velocity. The new scheme is applied to the full seven-equation Baer-Nunziato model of compressible multi-phase flows in two space dimensions. The use of a Lagrangian approach allows an excellent resolution of the solid contact and the resolution of jumps in the volume fraction. The high order of accuracy of the scheme in space and time is confirmed via a numerical convergence study. Finally, the proposed method is also applied to a reduced version of the compressible Baer-Nunziato model for the simulation of free surface water waves in moving domains. In particular, the phenomenon of sloshing is studied in a moving water tank and comparisons with experimental data are provided

    Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations on deforming meshes

    Get PDF
    An overview is given of a space-time discontinuous Galerkin finite element method for the compressible Navier-Stokes equations. This method is well suited for problems with moving (free) boundaries which require the use of deforming elements. In addition, due to the local discretization, the space-time discontinuous Galerkin method is well suited for mesh adaptation and parallel computing. The algorithm is demonstrated with computations of the unsteady \ud ow field about a delta wing and a NACA0012 airfoil in rapid pitch up motion
    • …
    corecore