9 research outputs found

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    VLSI Circuits for Bidirectional Neural Interfaces

    Get PDF
    Medical devices that deliver electrical stimulation to neural tissue are important clinical tools that can augment or replace pharmacological therapies. The success of such devices has led to an explosion of interest in the field, termed neuromodulation, with a diverse set of disorders being targeted for device-based treatment. Nevertheless, a large degree of uncertainty surrounds how and why these devices are effective. This uncertainty limits the ability to optimize therapy and gives rise to deleterious side effects. An emerging approach to improve neuromodulation efficacy and to better understand its mechanisms is to record bioelectric activity during stimulation. Understanding how stimulation affects electrophysiology can provide insights into disease, and also provides a feedback signal to autonomously tune stimulation parameters to improve efficacy or decrease side-effects. The aims of this work were taken up to advance the state-of-the-art in neuro-interface technology to enable closed-loop neuromodulation therapies. Long term monitoring of neuronal activity in awake and behaving subjects can provide critical insights into brain dynamics that can inform system-level design of closed-loop neuromodulation systems. Thus, first we designed a system that wirelessly telemetered electrocorticography signals from awake-behaving rats. We hypothesized that such a system could be useful for detecting sporadic but clinically relevant electrophysiological events. In an 18-hour, overnight recording, seizure activity was detected in a pre-clinical rodent model of global ischemic brain injury. We subsequently turned to the design of neurostimulation circuits. Three critical features of neurostimulation devices are safety, programmability, and specificity. We conceived and implemented a neurostimulator architecture that utilizes a compact on-chip circuit for charge balancing (safety), digital-to-analog converter calibration (programmability) and current steering (specificity). Charge balancing accuracy was measured at better than 0.3%, the digital-to-analog converters achieved 8-bit resolution, and physiological effects of current steering stimulation were demonstrated in an anesthetized rat. Lastly, to implement a bidirectional neural interface, both the recording and stimulation circuits were fabricated on a single chip. In doing so, we implemented a low noise, ultra-low power recording front end with a high dynamic range. The recording circuits achieved a signal-to-noise ratio of 58 dB and a spurious-free dynamic range of better than 70 dB, while consuming 5.5 μW per channel. We demonstrated bidirectional operation of the chip by recording cardiac modulation induced through vagus nerve stimulation, and demonstrated closed-loop control of cardiac rhythm

    Fully integrated transducer platform with cavity optomechanical readout

    Get PDF
    Research and development of transducers based on cavity optomechanics is a topic of high interest particularly because these transducers enable measurement of mechanical motion down to the fundamental limit of precision imposed by quantum mechanics. The development of an on-chip cavity optomechanical transducer platform that combines high bandwidth and sensitivity near the standard quantum limit with compactness, robustness, small size, and potential for low cost batch fabrication inherent in MEMS is demonstrated as a proof of concept study. Design, fabrication and characterization of fully integrated and fiber pigtailed transducers is presented. The devices combine high sensitivity (0.14 - 40 fm·Hz^(-1/2), high bandwidth optomechanical readout and built-in thermal and electrostatic actuation. It is implemented by a double-side wafer-scale microfabrication process combining one e-beam, six stepper, and three contact mask aligner lithography steps. The SiN probes can be actuated using an electrical signal supplied to an integrated thermal or electrostatic actuator. The probe is evanescently coupled to a high-Q (10^5 - 2 x 10^6) optical whispering gallery mode of the optical microdisk cavity and the motion is detected by measuring the resonance frequency shift of the optical cavity mode. The actuator can be used to dynamically move the probe as well as to tune the distance between the cantilever and the optical cavity, to change the sensitivity and range of measurement of the cantilever. One side of the probe overhangs the edge of the chip, where it can be easily coupled to a variety of off-chip samples and physical systems of interest. The modular design of the transducer allows for parallelization, which enables the possibility of sensor arrays for simultaneous detection of multiple forces or other physical properties. Parallelization is shown on a 2x1 array, which can be easily extended to larger array architectures. The application of the probe arrays and single probes in a commercial scanning probe microscope is shown. In addition the flexibility of this transducer approach is demonstrated with membrane transducers and acceleration sensors. The performance of all presented transducers is studied, focusing on displacement sensitivity, frequency stability and readout gain tuning.Forschung und Entwicklung von Wandlern basierend auf kavität- optomechanischen Elementen ist ein Forschungsgebiet von hohem Interesse. Sie kombiniert hohe Bandbreiten und Empfindlichkeit nahe dem Standardquantumlimit mit Kompaktheit, Robustheit, kleinen Abmessungen und dem Potential für eine wirtschaftliche Massenproduktion systemimmanent bei mikroelektromechanischen Systemen. Vollintegrierte Wandler erlauben demnach Bewegungsmessungen bis hin zum fundamentalen Quantenlimit. In dieser Arbeit werden Design, Herstellung und Charakterisierung eines vollintegrierten und glasfasergekoppelten Wandlers in einer Machbarkeitsstudie dargestellt. Das System kombiniert hohe Verschiebungsauflösungen 0.14 - 40 fm· Hz^(-1/2), optomechanische Detektion mit hoher Bandbreite und eine eingebaute thermische und elektrostatische Anregung. Die Herstellung erfolgt in einem doppelseitigen mikro- und nanotechnischen Fertigungsverfahren auf Waferbasis, in einer Kombination aus einem Elektronenstrahllithographieschritt, sechs Projektionslithographieschritten und drei Kontaktlithographie Schritten. Die Siliziumnitrid-Sonden können mittels eines elektrischen Signals, angelegt an den integrierten thermischen oder elektrostatischen Aktuator, angeregt werden. Sie sind optisch über das evanecente Feld mit einer optischen Kavität hoher Güte (10^5 - 2 x 10^6) gekoppelt. Die Bewegung der Sonde wird detektiert über eine Veränderung der Resonanzfrequenz der Kavität. Die eingebauten Aktuatoren ermöglichen die Einstellung des Abstandes zwischen Sonde und optischer Kavität, welche die Einstellung der Sensitivität ermöglicht. Eine Seite der Sonde steht über die Kante des Siliziumchips, um die Kopplung mit einer Vielzahl von Proben und physikalischen Systemen zu erlauben. Die modulare Bauweise des Wandlers schafft die Grundlage zur Parallelisierung der Sonden für die gleichzeitige Messung mehrerer Kräfte oder physikalischer Eigenschaften. Die Parallelisierung wird in dieser Arbeit am Beispiel eines 2x1 Array gezeigt, welche mit geringem Aufwand auf größere Arrayarchitekturen angepasst werden kann. Zur Demonstration der Funktion von Einzelsonden und Sondenarrays, wird die Sondenanwendung in der Rasterkraftmikroskopie präsentiert. Des Weiteren wird die Flexibilität der Wandlerbauweise an der Herstellung von Membrane- und Beschleunigungswandlern belegt. Das Verhalten aller hergestellten Wandler wird hinsichtlich der Bewegungsempfindlichkeit, Frequenzstabilität, und Einstellbarkeit der Auslesung analysiert

    Unified Analysis, Modeling, and Simulation of Chopping Artifacts in Continuous-Time Delta-Sigma Modulators

    No full text

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1372 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1990 and June 30, 1990. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Remote Sensing of Earth Resources: A literature survey with indexes (1970 - 1973 supplement). Section 1: Abstracts

    Get PDF
    Abstracts of reports, articles, and other documents introduced into the NASA scientific and technical information system between March 1970 and December 1973 are presented in the following areas: agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Immunohistochemical and electrophysiological investigation of E/I balance alterations in animal models of frontotemporal dementia

    Get PDF
    Behavioural variant frontotemporal dementia (bvFTD) is a neurodegenerative disease characterised by changes in behaviour. Apathy, behavioural disinhibition and stereotyped behaviours are the first symptoms to appear and all have a basis in reward and pleasure deficits. The ventral striatum and ventral regions of the globus pallidus are involved in reward and pleasure. It is therefore reasonable to suggest alterations in these regions may underpin bvFTD. One postulated contributory factor is alteration in E/I balance in striatal regions. GABAergic interneurons play a role in E/I balance, acting as local inhibitory brakes, they are therefore a rational target for research investigating early biological predictors of bvFTD. To investigate this, we will carry out immunohistochemical staining for GABAergic interneurons (parvalbumin and neuronal nitric oxide synthase) in striatal regions of brains taken from CHMP2B mice, a validated animal model of bvFTD. We hypothesise that there will be fewer GABAergic interneurons in the striatum which may lead to ‘reward-seeking’ behaviour in bvFTD. This will also enable us to investigate any preclinical alterations in interneuron expression within this region. Results will be analysed using a mixed ANOVA and if significant, post hoc t-tests will be used. The second part of our study will involve extracellular recordings from CHMP2B mouse brains using a multi-electrode array (MEA). This will enable us to determine if there are alterations in local field potentials (LFP) in preclinical and symptomatic animals. We will also be able to see if neuromodulators such as serotonin and dopamine effect LFPs after bath application. We will develop slice preparations to preserve pathways between the ventral tegmental area and the ventral pallidum, an output structure of the striatum, and the dorsal raphe nucleus and the VP. Using the MEA we will stimulate an endogenous release of dopamine and serotonin using the slice preparations as described above. This will enable us to see if there are any changes in LFPs after endogenous release of neuromodulators. We hypothesise there will be an increase in LFPs due to loss of GABAergic interneurons

    The Music Sound

    Get PDF
    A guide for music: compositions, events, forms, genres, groups, history, industry, instruments, language, live music, musicians, songs, musicology, techniques, terminology , theory, music video. Music is a human activity which involves structured and audible sounds, which is used for artistic or aesthetic, entertainment, or ceremonial purposes. The traditional or classical European aspects of music often listed are those elements given primacy in European-influenced classical music: melody, harmony, rhythm, tone color/timbre, and form. A more comprehensive list is given by stating the aspects of sound: pitch, timbre, loudness, and duration. Common terms used to discuss particular pieces include melody, which is a succession of notes heard as some sort of unit; chord, which is a simultaneity of notes heard as some sort of unit; chord progression, which is a succession of chords (simultaneity succession); harmony, which is the relationship between two or more pitches; counterpoint, which is the simultaneity and organization of different melodies; and rhythm, which is the organization of the durational aspects of music
    corecore