48 research outputs found

    Rainbow eulerian multidigraphs and the product of cycles

    Full text link
    An arc colored eulerian multidigraph with ll colors is rainbow eulerian if there is an eulerian circuit in which a sequence of ll colors repeats. The digraph product that refers the title was introduced by Figueroa-Centeno et al. as follows: let DD be a digraph and let Γ\Gamma be a family of digraphs such that V(F)=VV(F)=V for every FΓF\in \Gamma. Consider any function h:E(D)Γh:E(D)\longrightarrow\Gamma . Then the product DhΓD\otimes_{h} \Gamma is the digraph with vertex set V(D)×VV(D)\times V and ((a,x),(b,y))E(DhΓ)((a,x),(b,y))\in E(D\otimes_{h}\Gamma) if and only if (a,b)E(D) (a,b)\in E(D) and (x,y)E(h(a,b)) (x,y)\in E(h (a,b)). In this paper we use rainbow eulerian multidigraphs and permutations as a way to characterize the h\otimes_h-product of oriented cycles. We study the behavior of the h\otimes_h-product when applied to digraphs with unicyclic components. The results obtained allow us to get edge-magic labelings of graphs formed by the union of unicyclic components and with different magic sums.Comment: 12 pages, 5 figure

    Grassmann Integral Representation for Spanning Hyperforests

    Full text link
    Given a hypergraph G, we introduce a Grassmann algebra over the vertex set, and show that a class of Grassmann integrals permits an expansion in terms of spanning hyperforests. Special cases provide the generating functions for rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All these results are generalizations of Kirchhoff's matrix-tree theorem. Furthermore, we show that the class of integrals describing unrooted spanning (hyper)forests is induced by a theory with an underlying OSP(1|2) supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J. Phys.

    On distinguishing trees by their chromatic symmetric functions

    Get PDF
    Let TT be an unrooted tree. The \emph{chromatic symmetric function} XTX_T, introduced by Stanley, is a sum of monomial symmetric functions corresponding to proper colorings of TT. The \emph{subtree polynomial} STS_T, first considered under a different name by Chaudhary and Gordon, is the bivariate generating function for subtrees of TT by their numbers of edges and leaves. We prove that ST=S_T = , where is the Hall inner product on symmetric functions and Φ\Phi is a certain symmetric function that does not depend on TT. Thus the chromatic symmetric function is a stronger isomorphism invariant than the subtree polynomial. As a corollary, the path and degree sequences of a tree can be obtained from its chromatic symmetric function. As another application, we exhibit two infinite families of trees (\emph{spiders} and some \emph{caterpillars}), and one family of unicyclic graphs (\emph{squids}) whose members are determined completely by their chromatic symmetric functions.Comment: 16 pages, 3 figures. Added references [2], [13], and [15

    The spectrum of the Hilbert space valued second derivative with general self-adjoint boundary conditions

    Full text link
    We consider a large class of self-adjoint elliptic problem associated with the second derivative acting on a space of vector-valued functions. We present two different approaches to the study of the associated eigenvalues problems. The first, more general one allows to replace a secular equation (which is well-known in some special cases) by an abstract rank condition. The latter seems to apply particularly well to a specific boundary condition, sometimes dubbed "anti-Kirchhoff" in the literature, that arise in the theory of differential operators on graphs; it also permits to discuss interesting and more direct connections between the spectrum of the differential operator and some graph theoretical quantities. In either case our results yield, among other, some results on the symmetry of the spectrum

    On The Growth Of Permutation Classes

    Get PDF
    We study aspects of the enumeration of permutation classes, sets of permutations closed downwards under the subpermutation order. First, we consider monotone grid classes of permutations. We present procedures for calculating the generating function of any class whose matrix has dimensions m × 1 for some m, and of acyclic and unicyclic classes of gridded permutations. We show that almost all large permutations in a grid class have the same shape, and determine this limit shape. We prove that the growth rate of a grid class is given by the square of the spectral radius of an associated graph and deduce some facts relating to the set of grid class growth rates. In the process, we establish a new result concerning tours on graphs. We also prove a similar result relating the growth rate of a geometric grid class to the matching polynomial of a graph, and determine the effect of edge subdivision on the matching polynomial. We characterise the growth rates of geometric grid classes in terms of the spectral radii of trees. We then investigate the set of growth rates of permutation classes and establish a new upper bound on the value above which every real number is the growth rate of some permutation class. In the process, we prove new results concerning expansions of real numbers in non-integer bases in which the digits are drawn from sets of allowed values. Finally, we introduce a new enumeration technique, based on associating a graph with each permutation, and determine the generating functions for some previously unenumerated classes. We conclude by using this approach to provide an improved lower bound on the growth rate of the class of permutations avoiding the pattern 1324. In the process, we prove that, asymptotically, patterns in Łukasiewicz paths exhibit a concentrated Gaussian distribution

    On distinguishing trees by their chromatic symmetric functions

    Get PDF
    This is the author's accepted manuscript
    corecore