18,276 research outputs found

    Petri Games: Synthesis of Distributed Systems with Causal Memory

    Full text link
    We present a new multiplayer game model for the interaction and the flow of information in a distributed system. The players are tokens on a Petri net. As long as the players move in independent parts of the net, they do not know of each other; when they synchronize at a joint transition, each player gets informed of the causal history of the other player. We show that for Petri games with a single environment player and an arbitrary bounded number of system players, deciding the existence of a safety strategy for the system players is EXPTIME-complete.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Dependencies and Simultaneity in Membrane Systems

    Full text link
    Membrane system computations proceed in a synchronous fashion: at each step all the applicable rules are actually applied. Hence each step depends on the previous one. This coarse view can be refined by looking at the dependencies among rule occurrences, by recording, for an object, which was the a rule that produced it and subsequently (in a later step), which was the a rule that consumed it. In this paper we propose a way to look also at the other main ingredient in membrane system computations, namely the simultaneity in the rule applications. This is achieved using zero-safe nets that allows to synchronize transitions, i.e., rule occurrences. Zero-safe nets can be unfolded into occurrence nets in a classical way, and to this unfolding an event structure can be associated. The capability of capturing simultaneity of zero-safe nets is transferred on the level of event structure by adding a way to express which events occur simultaneously

    Event structures for Petri nets with persistence

    Get PDF
    Event structures are a well-accepted model of concurrency. In a seminal paper by Nielsen, Plotkin and Winskel, they are used to establish a bridge between the theory of domains and the approach to concurrency proposed by Petri. A basic role is played by an unfolding construction that maps (safe) Petri nets into a subclass of event structures, called prime event structures, where each event has a uniquely determined set of causes. Prime event structures, in turn, can be identified with their domain of configurations. At a categorical level, this is nicely formalised by Winskel as a chain of coreflections. Contrary to prime event structures, general event structures allow for the presence of disjunctive causes, i.e., events can be enabled by distinct minimal sets of events. In this paper, we extend the connection between Petri nets and event structures in order to include disjunctive causes. In particular, we show that, at the level of nets, disjunctive causes are well accounted for by persistent places. These are places where tokens, once generated, can be used several times without being consumed and where multiple tokens are interpreted collectively, i.e., their histories are inessential. Generalising the work on ordinary nets, Petri nets with persistence are related to a new subclass of general event structures, called locally connected, by means of a chain of coreflections relying on an unfolding construction

    On the Semantics of Petri Nets

    No full text
    Petri Place/Transition (PT) nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the "token game"' is too intensional, even in its more abstract interpretations in term of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category {PTNets} of PT nets, we introduce a category {DecOcc} of decorated (nondeterministic) occurrence nets and we define adjunctions between {PTNets} and {DecOcc} and between {DecOcc} and {Occ}, the category of occurrence nets. The role of {DecOcc} is to provide natural unfoldings for PT nets, i.e. acyclic safe nets where a notion of family is used for relating multiple instances of the same place. The unfolding functor from {PTNets} to {Occ} reduces to Winskel's when restricted to safe nets, while the standard coreflection between {Occ} and {Dom}, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between {PTNets} and {Dom}

    On the Model of Computation of Place/Transition Petri Nets

    No full text
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game", one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. More precisely, we introduce the new notion of decorated processes of Petri nets and we show that they induce on nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net N can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification

    Process versus Unfolding Semantics for Place/Transition Petri Nets

    Get PDF
    In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game," one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. In our formal development a relevant role is played by DecOcc, a category of occurrence nets appropriately decorated to take into account the history of tokens. The structure of decorated occurrence nets at the same time provides natural unfoldings for Place/Transition (PT) nets and suggests a new notion of processes, the decorated processes, which induce on Petri nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification
    • …
    corecore