34 research outputs found

    MARS: Message Passing for Antenna and RF Chain Selection for Hybrid Beamforming in MIMO Communication Systems

    Full text link
    In this paper, we consider a prospective receiving hybrid beamforming structure consisting of several radio frequency (RF) chains and abundant antenna elements in multi-input multi-output (MIMO) systems. Due to conventional costly full connections, we design an enhanced partially-connected beamformer employing low-density parity-check (LDPC) based structure. As a benefit of LDPC-based structure, information can be exchanged among clustered RF/antenna groups, which results in a low computational complexity order. Advanced message passing (MP) capable of inferring and transferring data among different paths is designed to support LDPC-based hybrid beamformer. We propose a message passing enhanced antenna and RF chain selection (MARS) scheme to minimize the operational power of antennas and RF chains of the receiver. Furthermore, sequential and parallel MP for MARS are respectively designed as MARS-S and MARS-P schemes to address convergence speed issue. Simulations have validated the convergence of both the MARS-P and the MARS-S algorithms. Owing to asynchronous information transfer of MARS-P, it reveals that higher power is required than that of MARS-S, which strikes a compelling balance between power consumption, convergence, and computational complexity. It is also demonstrated that the proposed MARS scheme outperforms the existing benchmarks using heuristic method of fully-/partially-connected architectures in open literature in terms of the lowest power and highest energy efficiency

    Towards low complexity matching theory for uplink wireless communication systems

    Get PDF
    Millimetre wave (mm-Wave) technology is considered a promising direction to achieve the high quality of services (QoSs) because it can provide high bandwidth, achieving a higher transmission rate due to its immunity to interference. However, there are several limitations to utilizing mm-Wave technology, such as more extraordinary precision hardware is manufactured at a higher cost because the size of its components is small. Consequently, mm-Wave technology is rarely applicable for long-distance applications due to its narrow beams width. Therefore, using cell-free massive multiple input multiple output (MIMO) with mm-Wave technology can solve these issues because this architecture of massive MIMO has better system performance, in terms of high achievable rate, high coverage, and handover-free, than conventional architectures, such as massive MIMO systems’ co-located and distributed (small cells). This technology necessitates a significant amount of power because each distributed access point (AP) has several antennas. Each AP has a few radio frequency (RF) chains in hybrid beamforming. Therefore more APs mean a large number of total RF chains in the cell-free network, which increases power consumption. To solve this problem, deactivating some antennas or RF chains at each AP can be utilized. However, the size of the cell-free network yields these two options as computationally demanding. On the other hand, a large number of users in the cell-free network causes pilot contamination issue due to the small length of the uplink training phase. This issue has been solved in the literature based on two options: pilot assignment and pilot power control. Still, these two solutions are complex due to the cell-free network size. Motivated by what was mentioned previously, this thesis proposes a novel technique with low computational complexity based on matching theory for antenna selection, RF chains activation, pilot assignment and pilot power control. The first part of this thesis provides an overview of matching theory and the conventional massive MIMO systems. Then, an overview of the cell-free massive MIMO systems and the related works of the signal processing techniques of the cell-free mm-Wave massive MIMO systems to maximize energy efficiency (EE), are provided. Based on the limitations of these techniques, the second part of this thesis presents a hybrid beamforming architecture with constant phase shifters (CPSs) for the distributed uplink cell-free mm-Wave massive MIMO systems based on exploiting antenna selection to reduce power consumption. The proposed scheme uses a matching technique to obtain the number of selected antennas which can contribute more to the desired signal power than the interference power for each RF chain at each AP. Therefore, the third part of this thesis solves the issue of the huge complexity of activating RF chains by presenting a low-complexity matching approach to activate a set of RF chains based on the Hungarian method to maximize the total EE in the centralized uplink of the cell-free mm-Wave massive MIMO systems when it is proposed hybrid beamforming with fully connected phase shifters network. The pilot contamination issue has been discussed in the last part of this thesis by utilizing matching theory in pilot assignment and pilot power control design for the uplink of cell-free massive MIMO systems to maximize SE. Firstly, an assignment optimization problem has been formulated to find the best possible pilot sequences to be inserted into a genetic algorithm (GA). Therefore, the GA will find the optimal solution. After that, a minimum-weighted assignment problem has been formulated regarding the power control design to assign pilot power control coefficients to the quality of the estimated channel. Then, the Hungarian method is utilized to solve this problem. The simulation results of the proposed matching theory for the mentioned issues reveal that the proposed matching approach is more energy-efficient and has lower computational complexity than state-of-the-art schemes for antenna selection and RF chain activation. In addition, the proposed matching schemes outperform the state-of-the-art techniques concerning the pilot assignment and the pilot power control design. This means that network scalability can be guaranteed with low computational complexity

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)

    Impact of NOMA on network capacity dimensioning for 5G HetNets

    Get PDF

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers
    corecore