302 research outputs found

    Multi-user video streaming using unequal error protection network coding in wireless networks

    Get PDF
    In this paper, we investigate a multi-user video streaming system applying unequal error protection (UEP) network coding (NC) for simultaneous real-time exchange of scalable video streams among multiple users. We focus on a simple wireless scenario where users exchange encoded data packets over a common central network node (e.g., a base station or an access point) that aims to capture the fundamental system behaviour. Our goal is to present analytical tools that provide both the decoding probability analysis and the expected delay guarantees for different importance layers of scalable video streams. Using the proposed tools, we offer a simple framework for design and analysis of UEP NC based multi-user video streaming systems and provide examples of system design for video conferencing scenario in broadband wireless cellular networks

    Unequal Error Protected JPEG 2000 Broadcast Scheme with Progressive Fountain Codes

    Full text link
    This paper proposes a novel scheme, based on progressive fountain codes, for broadcasting JPEG 2000 multimedia. In such a broadcast scheme, progressive resolution levels of images/video have been unequally protected when transmitted using the proposed progressive fountain codes. With progressive fountain codes applied in the broadcast scheme, the resolutions of images (JPEG 2000) or videos (MJPEG 2000) received by different users can be automatically adaptive to their channel qualities, i.e. the users with good channel qualities are possible to receive the high resolution images/vedio while the users with bad channel qualities may receive low resolution images/vedio. Finally, the performance of the proposed scheme is evaluated with the MJPEG 2000 broadcast prototype

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Hybrid FLUTE/DASH video delivery over mobile wireless networks

    Full text link
    This paper describes how FLUTE (File Delivery over Unidirectional Transport) and DASH (Dynamic Adaptive Streaming over HTTP) can be used to provide mobile video streaming services over broadcast wireless networks. FLUTE is a multicast protocol for multimedia file download. In this proposal, the protocol is adapted to provide video streaming services in crowded environments. Thus, video is delivered over a single connection to all viewers, reducing the traffic in the network. FLUTE incorporates an AL-FEC (Application Layered Forward Error Correction) mechanism in order to improve the reliability of the broadcast communication channel. For streaming applications, AL-FEC improves the relationship between the PSNR (Peak Signal-to-Noise Ratio) of the received video and the bandwidth allocated to the broadcast connection. The AL-FEC hereby presented applies simple unequal error protection schemes to favor the download of key frames. Furthermore, the proposal is based on the same video segmentation mechanism as DASH and therefore, clients can connect to a DASH repository to repair errors in the segments. This paper shows that FLUTE and DASH can be seamlessly integrated into a hybrid broadcast/unicast streaming technology, providing flexibility to trade off PSNR and bandwidth depending on the conditions of the mobile network.This work was supported by the 11012 ICARE (Innovative Cloud Architecture for Real Entertainment) project within the ITEA 2 Call 6 Program of the European Union.Belda Ortega, R.; De Fez Lava, I.; Fraile Gil, F.; Arce Vila, P.; Guerri Cebollada, JC. (2014). Hybrid FLUTE/DASH video delivery over mobile wireless networks. Transactions on Emerging Telecommunications Technologies. 25(11):1070-1082. doi:10.1002/ett.2804S107010822511ETSI TS 126 346 v11.3.0. Universal Mobile Telecommunications Systems (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and Codecs 2013Lecompte, D., & Gabin, F. (2012). Evolved multimedia broadcast/multicast service (eMBMS) in LTE-advanced: overview and Rel-11 enhancements. IEEE Communications Magazine, 50(11), 68-74. doi:10.1109/mcom.2012.6353684Stockhammer T Luby MG DASH in mobile networks and services. Presented at IEEE Visual Communications and Image Processing (VCIP) , 2012Seeling, P., & Reisslein, M. (2012). Video Transport Evaluation With H.264 Video Traces. IEEE Communications Surveys & Tutorials, 14(4), 1142-1165. doi:10.1109/surv.2011.082911.00067Zhao, S., Tuninetti, D., Ansari, R., & Schonfeld, D. (2012). Multiple description coding over multiple correlated erasure channels. Transactions on Emerging Telecommunications Technologies, 23(6), 522-536. doi:10.1002/ett.2507Lin, C.-H., Wang, Y.-C., Shieh, C.-K., & Hwang, W.-S. (2012). An unequal error protection mechanism for video streaming over IEEE 802.11e WLANs. Computer Networks, 56(11), 2590-2599. doi:10.1016/j.comnet.2012.04.004Paila T Walsh R Luby M Roca V Lehtonen R FLUTE - file delivery over unidirectional transport. 2012Luby M Watson M Vicisano L Asynchronous layered coding (ALC) protocol instantiation. 2010Ameigeiras, P., Ramos-Munoz, J. J., Navarro-Ortiz, J., & Lopez-Soler, J. M. (2012). Analysis and modelling of YouTube traffic. Transactions on Emerging Telecommunications Technologies, 23(4), 360-377. doi:10.1002/ett.2546ISO/IEC 23009-1. Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presentation description and segment formats 2012De Fez, I., Fraile, F., Belda, R., & Guerri, J. C. (2012). Analysis and Evaluation of Adaptive LDPC AL-FEC Codes for Content Download Services. IEEE Transactions on Multimedia, 14(3), 641-650. doi:10.1109/tmm.2012.2190392Jenkac, H., Stockhammer, T., & Wen Xu. (2006). Asynchronous and reliable on-demand media broadcast. IEEE Network, 20(2), 14-20. doi:10.1109/mnet.2006.1607891Neumann C Roca V Scalable video streaming over ALC (SVSoA): a solution for the large scale multicast distribution of videos. Presented at 1st Int. Workshop on SMDI , 2004Lederer S Müller C Timmerer C Dynamic adaptive streaming over HTTP dataset Proc. of the ACM Conference on Multimedia Systems (MMSys) 2012 89 94Blender Foundation webpage http://www.blender.org/blenderorg/Bai, H., & Atiquzzaman, M. (2003). Error modeling schemes for fading channels in wireless communications: A survey. IEEE Communications Surveys & Tutorials, 5(2), 2-9. doi:10.1109/comst.2003.5341334Ohm, J.-R. (2004). Multimedia Communication Technology. Signals and Communication Technology. doi:10.1007/978-3-642-18750-

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE

    Optimized Network-coded Scalable Video Multicasting over eMBMS Networks

    Get PDF
    Delivery of multicast video services over fourth generation (4G) networks such as 3GPP Long Term Evolution-Advanced (LTE-A) is gaining momentum. In this paper, we address the issue of efficiently multicasting layered video services by defining a novel resource allocation framework that aims to maximize the service coverage whilst keeping the radio resource footprint low. A key point in the proposed system mode is that the reliability of multicast video services is ensured by means of an Unequal Error Protection implementation of the Network Coding (UEP-NC) scheme. In addition, both the communication parameters and the UEP-NC scheme are jointly optimized by the proposed resource allocation framework. Numerical results show that the proposed allocation framework can significantly increase the service coverage when compared to a conventional Multi-rate Transmission (MrT) strategy.Comment: Proc. of IEEE ICC 2015 - Mobile and Wireless Networking Symposium, to appea

    Enhancement of Adaptive Forward Error Correction Mechanism for Video Transmission Over Wireless Local Area Network

    Get PDF
    Video transmission over the wireless network faces many challenges. The most critical challenge is related to packet loss. To overcome the problem of packet loss, Forward Error Correction is used by adding extra packets known as redundant packet or parity packet. Currently, FEC mechanisms have been adopted together with Automatic Repeat reQuest (ARQ) mechanism to overcome packet losses and avoid network congestion in various wireless network conditions. The number of FEC packets need to be generated effectively because wireless network usually has varying network conditions. In the current Adaptive FEC mechanism, the FEC packets are decided by the average queue length and average packet retransmission times. The Adaptive FEC mechanisms have been proposed to suit the network condition by generating FEC packets adaptively in the wireless network. However, the current Adaptive FEC mechanism has some major drawbacks such as the reduction of recovery performance which injects too many excessive FEC packets into the network. This is not flexible enough to adapt with varying wireless network condition. Therefore, the enhancement of Adaptive FEC mechanism (AFEC) known as Enhanced Adaptive FEC (EnAFEC) has been proposed. The aim is to improve recovery performance on the current Adaptive FEC mechanism by injecting FEC packets dynamically based on varying wireless network conditions. The EnAFEC mechanism is implemented in the simulation environment using Network Simulator 2 (NS-2). Performance evaluations are also carried out. The EnAFEC was tested with the random uniform error model. The results from experiments and performance analyses showed that EnAFEC mechanism outperformed the other Adaptive FEC mechanism in terms of recovery efficiency. Based on the findings, the optimal amount of FEC generated by EnAFEC mechanism can recover high packet loss and produce good video quality

    Cross layer techniques for flexible transport protocol using UDP-Lite over a satellite network

    Get PDF
    Traditional real-time multimedia and streaming services have utilised UDP over RTP. Wireless transmission, by its nature, may introduce a variable, sometimes high bit error ratio. Current transport layer protocols drop all corrupted packets, in contrast, protocols such as UDP-Lite allow error-resilient applications to be supported in the networking stack. This paper presents experimental quantitative performance metrics using H.264 and UDP Lite for the next generation transport of IP multimedia, and discusses the architectural implications for enhancing performance of a wireless and/or satellite environment
    corecore