68 research outputs found

    Unequal Error Protection in Coded Slotted ALOHA

    Full text link
    We analyze the performance of coded slotted ALOHA systems for a scenario where users have different error protection requirements and correspondingly can be divided into user classes. The main goal is to design the system so that the requirements for each class are satisfied. To that end, we derive analytical error floor approximations of the packet loss rate for each class in the finite frame length regime, as well as the density evolution in the asymptotic case. Based on this analysis, we propose a heuristic approach for the optimization of the degree distributions to provide the required unequal error protection. In addition, we analyze the decoding delay for users in different classes and show that better protected users experience a smaller average decoding delay

    Error Floor Analysis of Coded Slotted ALOHA over Packet Erasure Channels

    Get PDF
    We present a framework for the analysis of the error floor of coded slotted ALOHA (CSA) for finite frame lengths over the packet erasure channel. The error floor is caused by stopping sets in the corresponding bipartite graph, whose enumeration is, in general, not a trivial problem. We therefore identify the most dominant stopping sets for the distributions of practical interest. The derived analytical expressions allow us to accurately predict the error floor at low to moderate channel loads and characterize the unequal error protection inherent in CSA

    Coded Slotted ALOHA with Varying Packet Loss Rate across Users

    Full text link
    The recent research has established an analogy between successive interference cancellation in slotted ALOHA framework and iterative belief-propagation erasure-decoding, which has opened the possibility to enhance random access protocols by utilizing theory and tools of erasure-correcting codes. In this paper we present a generalization of the and-or tree evaluation, adapted for the asymptotic analysis of the slotted ALOHA-based random-access protocols, for the case when the contending users experience different channel conditions, resulting in packet loss probability that varies across users. We apply the analysis to the example of frameless ALOHA, where users contend on a slot basis. We present results regarding the optimal access probabilities and contention period lengths, such that the throughput and probability of user resolution are maximized.Comment: 4 pages, submitted to GlobalSIP 201

    Prioritized Random MAC Optimization via Graph-based Analysis

    Get PDF
    Motivated by the analogy between successive interference cancellation and iterative belief-propagation on erasure channels, irregular repetition slotted ALOHA (IRSA) strategies have received a lot of attention in the design of medium access control protocols. The IRSA schemes have been mostly analyzed for theoretical scenarios for homogenous sources, where they are shown to substantially improve the system performance compared to classical slotted ALOHA protocols. In this work, we consider generic systems where sources in different importance classes compete for a common channel. We propose a new prioritized IRSA algorithm and derive the probability to correctly resolve collisions for data from each source class. We then make use of our theoretical analysis to formulate a new optimization problem for selecting the transmission strategies of heterogenous sources. We optimize both the replication probability per class and the source rate per class, in such a way that the overall system utility is maximized. We then propose a heuristic-based algorithm for the selection of the transmission strategy, which is built on intrinsic characteristics of the iterative decoding methods adopted for recovering from collisions. Experimental results validate the accuracy of the theoretical study and show the gain of well-chosen prioritized transmission strategies for transmission of data from heterogenous classes over shared wireless channels

    All-to-all Broadcast for Vehicular Networks Based on Coded Slotted ALOHA

    Get PDF
    We propose an uncoordinated all-to-all broadcast protocol for periodic messages in vehicular networks based on coded slotted ALOHA (CSA). Unlike classical CSA, each user acts as both transmitter and receiver in a half-duplex mode. As in CSA, each user transmits its packet several times. The half-duplex mode gives rise to an interesting design trade-off: the more the user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We compare the proposed protocol with carrier sense multiple access with collision avoidance, currently adopted as a multiple access protocol for vehicular networks. The results show that the proposed protocol greatly increases the number of users in the network that reliably communicate with each other. We also provide analytical tools to predict the performance of the proposed protocol.Comment: v2: small typos fixe

    Probabilistic Handshake in All-to-all Broadcast Coded Slotted ALOHA

    Get PDF
    We propose a probabilistic handshake mechanism for all-to-all broadcast coded slotted ALOHA. We consider a fully connected network where each user acts as both transmitter and receiver in a half-duplex mode. Users attempt to exchange messages with each other and to establish one-to-one handshakes, in the sense that each user decides whether its packet was successfully received by the other users: After performing decoding, each user estimates in which slots the resolved users transmitted their packets and, based on that, decides if these users successfully received its packet. The simulation results show that the proposed handshake algorithm allows the users to reliably perform the handshake. The paper also provides some analytical bounds on the performance of the proposed algorithm which are in good agreement with the simulation results

    Broadcast Coded Slotted ALOHA: A Finite Frame Length Analysis

    Full text link
    We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives rise to a double unequal error protection (DUEP) phenomenon: the more a user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We analyze the performance of B-CSA over the packet erasure channel for a finite frame length. In particular, we provide a general analysis of stopping sets for B-CSA and derive an analytical approximation of the performance in the error floor (EF) region, which captures the DUEP feature of B-CSA. Simulation results reveal that the proposed approximation predicts very well the performance of B-CSA in the EF region. Finally, we consider the application of B-CSA to vehicular communications and compare its performance with that of carrier sense multiple access (CSMA), the current MAC protocol in vehicular networks. The results show that B-CSA is able to support a much larger number of users than CSMA with the same reliability.Comment: arXiv admin note: text overlap with arXiv:1501.0338

    Bit-Wise Decoders for Coded Modulation and Broadcast Coded Slotted ALOHA

    Get PDF
    This thesis deals with two aspects of wireless communications. The first aspect is about efficient point-to-point data transmission. To achieve high spectral efficiency, coded modulation, which is a concatenation of higher order modulation with error correction coding, is used. Bit-interleaved coded modulation (BICM) is a pragmatic approach to coded modulation, where soft information on encoded bits is calculated at the receiver and passed to a bit-wise decoder. Soft information is usually obtained in the form of log-likelihood ratios (also known as L-values), calculated using the max-log approximation. In this thesis, we analyze bit-wise decoders for pulse-amplitude modulation (PAM) constellations over the additive white Gaussian noise (AWGN) channel when the max-log approximation is used for calculating L-values. First, we analyze BICM systems from an information theoretic perspective. We prove that the max-log approximation causes information loss for all PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We then analyze how the max-log approximation affects the generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder. Second, we compare the performance of the standard BICM decoder with that of the ML decoder. We show that, when the signal-to-noise ratio (SNR) goes to infinity, the loss in terms of pairwise error probability is bounded by 1.25 dB for any two codewords. The analysis further shows that the loss is zero for a wide range of linear codes. The second aspect of wireless communications treated in this thesis is multiple channel access. Our main objective here is to provide reliable message exchange between nodes in a wireless ad hoc network with stringent delay constraints. To that end, we propose an uncoordinated medium access control protocol, termed all-to-all broadcast coded slotted ALOHA (B-CSA), that exploits coding over packets at the transmitter side and successive interference cancellation at the receiver side. The protocol resembles low-density parity-check codes and can be analyzed using the theory of codes on graphs. The packet loss rate performance of the protocol exhibits a threshold behavior with distinct error floor and waterfall regions. We derive a tight error floor approximation that is used for the optimization of the protocol. We also show how the error floor approximation can be used to design protocols for networks, where users have different reliability requirements. We use B-CSA in vehicular networks and show that it outperforms carrier sense multiple access currently adopted as the MAC protocol for vehicular communications. Finally, we investigate the possibility of establishing a handshake in vehicular networks by means of B-CSA
    • …
    corecore