15,534 research outputs found

    A Constraint-based Approach for Generating Transformation Patterns

    Full text link
    Undoing operations is an indispensable feature for many collaborative applications, mainly collaborative editors. It provides the ability to restore a correct state of shared data after erroneous operations. In particular, selective undo allows to undo any operation and is based on rearranging operations in the history thanks to the Operational Transformation (OT) approach. OT is an optimistic replication technique allowing for updating the shared data concurrently while maintaining convergence. It is a challenging task how to meaningfully combine OT and undo approaches. Indeed, undoing operations that are received and executed out-of-order at different sites leads to divergence cases. Even though various undo solutions have been proposed over the recent years, they are either limited or erroneous. In this paper, we propose a constraint-based approach to address the undo problem. We use Constraint Satisfaction Problem (CSP) theory to devise correct and undoable transformation patterns (w.r.t OT and undo properties) which considerably simplifies the design of collaborative objects.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    A Generic Undo Support for State-Based CRDTs

    Get PDF
    CRDTs (Conflict-free Replicated Data Types) have properties desirable for large-scale distributed systems with variable network latency or transient partitions. With CRDT, data are always available for local updates and data states converge when the replicas have incorporated the same updates. Undo is useful for correcting human mistakes and for restoring system-wide invariant violated due to long delays or network partitions. There is currently no generally applicable undo support for CRDTs. There are at least two reasons for this. First, there is currently no abstraction that we can practically use to capture the relations between undo and normal operations with respect to concurrency and causality. Second, using inverse operations as the existing partial solutions, the CRDT designer has to hard-code certain rules and design a new CRDT for almost every operation that needs undo support. In this paper, we present an approach to generic support of undo for CRDTs. The approach consists of two major parts. We first work out an abstraction that captures the semantics of concurrent undo and redo operations through equivalence classes. The abstraction is a natural extension of undo and redo in sequential applications and is straightforward to implement in practice. By using this abstraction, we then device a mechanism to augment existing CRDTs. The mechanism provides an "out of the box" support for undo without the involvement of the CRDT designers. We also present a practical application of the approach in collaborative editing

    Scalable XML Collaborative Editing with Undo short paper

    Get PDF
    Commutative Replicated Data-Type (CRDT) is a new class of algorithms that ensures scalable consistency of replicated data. It has been successfully applied to collaborative editing of texts without complex concurrency control. In this paper, we present a CRDT to edit XML data. Compared to existing approaches for XML collaborative editing, our approach is more scalable and handles all the XML editing aspects : elements, contents, attributes and undo. Indeed, undo is recognized as an important feature for collaborative editing that allows to overcome system complexity through error recovery or collaborative conflict resolution

    On Consistency of Operational Transformation Approach

    Full text link
    The Operational Transformation (OT) approach, used in many collaborative editors, allows a group of users to concurrently update replicas of a shared object and exchange their updates in any order. The basic idea of this approach is to transform any received update operation before its execution on a replica of the object. This transformation aims to ensure the convergence of the different replicas of the object, even though the operations are executed in different orders. However, designing transformation functions for achieving convergence is a critical and challenging issue. Indeed, the transformation functions proposed in the literature are all revealed incorrect. In this paper, we investigate the existence of transformation functions for a shared string altered by insert and delete operations. From the theoretical point of view, two properties - named TP1 and TP2 - are necessary and sufficient to ensure convergence. Using controller synthesis technique, we show that there are some transformation functions which satisfy only TP1 for the basic signatures of insert and delete operations. As a matter of fact, it is impossible to meet both properties TP1 and TP2 with these simple signatures.Comment: In Proceedings Infinity 2012, arXiv:1302.310

    Analyzing impacts of change operations in evolving ontologies

    Get PDF
    Ontologies evolve over time to adapt to the dynamically changing knowledge in a domain. The evolution includes addition of new entities and modification or deletion of obsolete entities. These changes could have impacts on the remaining entities and dependent systems of the ontology. In this paper, we address the impacts of changes prior to their permanent implementation. To this end, we identify possible structural and semantic impacts and propose a bottom-up change impact analysis method which contains two phases. The first phase focuses on analyzing impacts of atomic change operations and the second phase focuses on analyzing impacts of composite changes which include impact cancellation, balancing and transformation due to implementation of two or more atomic changes. This method provides crucial information on the impacts and could be used for selecting evolution strategies and conducting what-if analysis before evolving the ontologies

    Interactive context-aware user-driven metadata correction in digital libraries

    Get PDF
    Personal name variants are a common problem in digital libraries, reducing the precision of searches and complicating browsing-based interaction. The book-centric approach of name authority control has not scaled to match the growth and diversity of digital repositories. In this paper, we present a novel system for user-driven integration of name variants when interacting with web-based information-in particular digital library-systems. We approach these issues via a client-side JavaScript browser extension that can reorganize web content and also integrate remote data sources. Designed to be agnostic towards the web sites it is applied to, we illustrate the developed proof-of-concept system through worked examples using three different digital libraries. We discuss the extensibility of the approach in the context of other user-driven information systems and the growth of the Semantic Web
    corecore