1,171 research outputs found

    Controlling rigid formations of mobile agents under inconsistent measurements

    Get PDF
    Despite the great success of using gradient-based controllers to stabilize rigid formations of autonomous agents in the past years, surprising yet intriguing undesirable collective motions have been reported recently when inconsistent measurements are used in the agents' local controllers. To make the existing gradient control robust against such measurement inconsistency, we exploit local estimators following the well known internal model principle for robust output regulation control. The new estimator-based gradient control is still distributed in nature and can be constructed systematically even when the number of agents in a rigid formation grows. We prove rigorously that the proposed control is able to guarantee exponential convergence and then demonstrate through robotic experiments and computer simulations that the reported inconsistency-induced orbits of collective movements are effectively eliminated.Comment: 10 page

    Distributed scaling control of rigid formations

    Get PDF
    Recently it has been reported that biased range-measurements among neighboring agents in the gradient distance-based formation control can lead to predictable collective motion. In this paper we take advantage of this effect and by introducing distributed parameters to the prescribed inter-distances we are able to manipulate the steady-state motion of the formation. This manipulation is in the form of inducing simultaneously the combination of constant translational and angular velocities and a controlled scaling of the rigid formation. While the computation of the distributed parameters for the translational and angular velocities is based on the well-known graph rigidity theory, the parameters responsible for the scaling are based on some recent findings in bearing rigidity theory. We carry out the stability analysis of the modified gradient system and simulations in order to validate the main result.Comment: 6 pages In proceedings 55th Conference on Decision and Control, year 201

    Distributed stabilization control of rigid formations with prescribed orientation

    Full text link
    Most rigid formation controllers reported in the literature aim to only stabilize a rigid formation shape, while the formation orientation is not controlled. This paper studies the problem of controlling rigid formations with prescribed orientations in both 2-D and 3-D spaces. The proposed controllers involve the commonly-used gradient descent control for shape stabilization, and an additional term to control the directions of certain relative position vectors associated with certain chosen agents. In this control framework, we show the minimal number of agents which should have knowledge of a global coordinate system (2 agents for a 2-D rigid formation and 3 agents for a 3-D rigid formation), while all other agents do not require any global coordinate knowledge or any coordinate frame alignment to implement the proposed control. The exponential convergence to the desired rigid shape and formation orientation is also proved. Typical simulation examples are shown to support the analysis and performance of the proposed formation controllers.Comment: This paper was submitted to Automatica for publication. Compared to the submitted version, this arXiv version contains complete proofs, examples and remarks (some of them are removed in the submitted version due to space limit.

    Controlling a triangular flexible formation of autonomous agents

    Get PDF
    In formation control, triangular formations consisting of three autonomous agents serve as a class of benchmarks that can be used to test and compare the performances of different controllers. We present an algorithm that combines the advantages of both position- and distance-based gradient descent control laws. For example, only two pairs of neighboring agents need to be controlled, agents can work in their own local frame of coordinates and the orientation of the formation with respect to a global frame of coordinates is not prescribed. We first present a novel technique based on adding artificial biases to neighboring agents' range sensors such that their eventual positions correspond to a collinear configuration. Right after, a small modification in the bias terms by introducing a prescribed rotation matrix will allow the control of the bearing of the neighboring agents.Comment: 7 pages, accepted in the 20th World Congress of the International Federation of Automatic Control (IFAC

    Taming mismatches in inter-agent distances for the formation-motion control of second-order agents

    Get PDF
    This paper presents the analysis on the influence of distance mismatches on the standard gradient-based rigid formation control for second-order agents. It is shown that, similar to the first-order case as recently discussed in the literature, these mismatches introduce two undesired group behaviors: a distorted final shape and a steady-state motion of the group formation. We show that such undesired behaviors can be eliminated by combining the standard formation control law with distributed estimators. Finally, we show how the mismatches can be effectively employed as design parameters in order to control a combined translational and rotational motion of the formation.Comment: 14 pages, conditionally accepted in Automatic Control, IEEE Transactions o
    • …
    corecore