4,839 research outputs found

    On the Complexity of the Mis\`ere Version of Three Games Played on Graphs

    Full text link
    We investigate the complexity of finding a winning strategy for the mis\`ere version of three games played on graphs : two variants of the game NimG\text{NimG}, introduced by Stockmann in 2004 and the game Vertex Geography\text{Vertex Geography} on both directed and undirected graphs. We show that on general graphs those three games are PSPACE\text{PSPACE}-Hard or Complete. For one PSPACE\text{PSPACE}-Hard variant of NimG\text{NimG}, we find an algorithm to compute an effective winning strategy in time O(∣V(G)∣.∣E(G)∣)\mathcal{O}(\sqrt{|V(G)|}.|E(G)|) when GG is a bipartite graph

    Centrality anomalies in complex networks as a result of model over-simplification

    Get PDF
    Tremendous advances have been made in our understanding of the properties and evolution of complex networks. These advances were initially driven by information-poor empirical networks and theoretical analysis of unweighted and undirected graphs. Recently, information-rich empirical data complex networks supported the development of more sophisticated models that include edge directionality and weight properties, and multiple layers. Many studies still focus on unweighted undirected description of networks, prompting an essential question: how to identify when a model is simpler than it must be? Here, we argue that the presence of centrality anomalies in complex networks is a result of model over-simplification. Specifically, we investigate the well-known anomaly in betweenness centrality for transportation networks, according to which highly connected nodes are not necessarily the most central. Using a broad class of network models with weights and spatial constraints and four large data sets of transportation networks, we show that the unweighted projection of the structure of these networks can exhibit a significant fraction of anomalous nodes compared to a random null model. However, the weighted projection of these networks, compared with an appropriated null model, significantly reduces the fraction of anomalies observed, suggesting that centrality anomalies are a symptom of model over-simplification. Because lack of information-rich data is a common challenge when dealing with complex networks and can cause anomalies that misestimate the role of nodes in the system, we argue that sufficiently sophisticated models be used when anomalies are detected.Comment: 14 pages, including 9 figures. APS style. Accepted for publication in New Journal of Physic

    Computational fact checking from knowledge networks

    Get PDF
    Traditional fact checking by expert journalists cannot keep up with the enormous volume of information that is now generated online. Computational fact checking may significantly enhance our ability to evaluate the veracity of dubious information. Here we show that the complexities of human fact checking can be approximated quite well by finding the shortest path between concept nodes under properly defined semantic proximity metrics on knowledge graphs. Framed as a network problem this approach is feasible with efficient computational techniques. We evaluate this approach by examining tens of thousands of claims related to history, entertainment, geography, and biographical information using a public knowledge graph extracted from Wikipedia. Statements independently known to be true consistently receive higher support via our method than do false ones. These findings represent a significant step toward scalable computational fact-checking methods that may one day mitigate the spread of harmful misinformation
    • …
    corecore