273 research outputs found

    Imaging and counting of targets with a high resolution multibeam sonar

    Get PDF
    Includes abstract.Includes bibliographical references (p. 113-116).This dissertation pertains to the development of an imaging and counting system for a high resolution multibeam sonar. A mathematical model for the operation of the multibeam sonar is derived. The computational model is developed into a simulator for the multibeam sonar in MATLAB

    Underwater target detection using multichannel subband adaptive filtering and high-order correlation schemes

    Get PDF
    Includes bibliographical references.In this paper, new pre- and post-processing schemes are developed to process shallow-water sonar data to improve the accuracy of target detection. A multichannel subband adaptive filtering is applied to preprocess the data in order to isolate the potential target returns from the acoustic backscattered signals and improve the signal-to-reverberation ratio. This is done by estimating the time delays associated with the reflections in different subbands. The preprocessed results are then beamformed to generate an image for each ping of the sonar. The testing results on both the simulated and real data revealed the efficiency of this scheme in time-delay estimation and its capability in removing most of the competing reverberations and noise. To improve detection rate while significantly minimizing the incident of false detections, a high-order correlation (HOC) method for postprocessing the beamformed images is then developed. This method determines the consistency in occurrence of the target returns in several consecutive pings. The application of the HOC process to the real beamformed sonar data showed the ability of this method for removing the clutter and at the same time boosting the target returns in several consecutive pings. The algorithm is simple, fast, and easy to implement.This work was supported by the Office of Naval Research (ONR 321TS) under Contract N61331-94-K-0018

    Sonar beamforming based upon monaural localisation techniques

    Get PDF
    Includes bibliographies.Sonar beamforming is usually accomplished using a multi-element transducer array. To obtain high resolution, such a system is costly and complex. In contrast, many mammals are capable of good angular resolution using only a single active element surrounded by an irregular reflector – the ear. A study of monaural localisation was therefore undertaken, with a view to the development of a novel beamforming system which uses only a single active element. Computer simulations have shown that the direction of a source can be determined by cross –correlating the output signal spectrum with the known spectral responses of the receiving system for all angles
    • …
    corecore