3,818 research outputs found

    CNN based dense underwater 3D scene reconstruction by transfer learning using bubble database

    Full text link
    Dense 3D shape acquisition of swimming human or live fish is an important research topic for sports, biological science and so on. For this purpose, active stereo sensor is usually used in the air, however it cannot be applied to the underwater environment because of refraction, strong light attenuation and severe interference of bubbles. Passive stereo is a simple solution for capturing dynamic scenes at underwater environment, however the shape with textureless surfaces or irregular reflections cannot be recovered. Recently, the stereo camera pair with a pattern projector for adding artificial textures on the objects is proposed. However, to use the system for underwater environment, several problems should be compensated, i.e., disturbance by fluctuation and bubbles. Simple solution is to use convolutional neural network for stereo to cancel the effects of bubbles and/or water fluctuation. Since it is not easy to train CNN with small size of database with large variation, we develop a special bubble generation device to efficiently create real bubble database of multiple size and density. In addition, we propose a transfer learning technique for multi-scale CNN to effectively remove bubbles and projected-patterns on the object. Further, we develop a real system and actually captured live swimming human, which has not been done before. Experiments are conducted to show the effectiveness of our method compared with the state of the art techniques.Comment: IEEE Winter Conference on Applications of Computer Vision. arXiv admin note: text overlap with arXiv:1808.0834

    3D Surface Reconstruction of Underwater Objects

    Full text link
    In this paper, we propose a novel technique to reconstruct 3D surface of an underwater object using stereo images. Reconstructing the 3D surface of an underwater object is really a challenging task due to degraded quality of underwater images. There are various reason of quality degradation of underwater images i.e., non-uniform illumination of light on the surface of objects, scattering and absorption effects. Floating particles present in underwater produces Gaussian noise on the captured underwater images which degrades the quality of images. The degraded underwater images are preprocessed by applying homomorphic, wavelet denoising and anisotropic filtering sequentially. The uncalibrated rectification technique is applied to preprocessed images to rectify the left and right images. The rectified left and right image lies on a common plane. To find the correspondence points in a left and right images, we have applied dense stereo matching technique i.e., graph cut method. Finally, we estimate the depth of images using triangulation technique. The experimental result shows that the proposed method reconstruct 3D surface of underwater objects accurately using captured underwater stereo images.Comment: International Journal of Computer Applications (2012

    Deep Semantic Segmentation in an AUV for Online Posidonia Oceanica Meadows identification

    Full text link
    Recent studies have shown evidence of a significant decline of the Posidonia oceanica (P.O.) meadows on a global scale. The monitoring and mapping of these meadows are fundamental tools for measuring their status. We present an approach based on a deep neural network to automatically perform a high-precision semantic segmentation of P.O. meadows in sea-floor images, offering several improvements over the state of the art techniques. Our network demonstrates outstanding performance over diverse test sets, reaching a precision of 96.57% and an accuracy of 96.81%, surpassing the reliability of labelling the images manually. Also, the network is implemented in an Autonomous Underwater Vehicle (AUV), performing an online P.O. segmentation, which will be used to generate real-time semantic coverage maps.Comment: 11 pages, 16 figure

    Underwater Single Image Color Restoration Using Haze-Lines and a New Quantitative Dataset

    Full text link
    Underwater images suffer from color distortion and low contrast, because light is attenuated while it propagates through water. Attenuation under water varies with wavelength, unlike terrestrial images where attenuation is assumed to be spectrally uniform. The attenuation depends both on the water body and the 3D structure of the scene, making color restoration difficult. Unlike existing single underwater image enhancement techniques, our method takes into account multiple spectral profiles of different water types. By estimating just two additional global parameters: the attenuation ratios of the blue-red and blue-green color channels, the problem is reduced to single image dehazing, where all color channels have the same attenuation coefficients. Since the water type is unknown, we evaluate different parameters out of an existing library of water types. Each type leads to a different restored image and the best result is automatically chosen based on color distribution. We collected a dataset of images taken in different locations with varying water properties, showing color charts in the scenes. Moreover, to obtain ground truth, the 3D structure of the scene was calculated based on stereo imaging. This dataset enables a quantitative evaluation of restoration algorithms on natural images and shows the advantage of our method

    Robust Gesture-Based Communication for Underwater Human-Robot Interaction in the context of Search and Rescue Diver Missions

    Full text link
    We propose a robust gesture-based communication pipeline for divers to instruct an Autonomous Underwater Vehicle (AUV) to assist them in performing high-risk tasks and helping in case of emergency. A gesture communication language (CADDIAN) is developed, based on consolidated and standardized diver gestures, including an alphabet, syntax and semantics, ensuring a logical consistency. A hierarchical classification approach is introduced for hand gesture recognition based on stereo imagery and multi-descriptor aggregation to specifically cope with underwater image artifacts, e.g. light backscatter or color attenuation. Once the classification task is finished, a syntax check is performed to filter out invalid command sequences sent by the diver or generated by errors in the classifier. Throughout this process, the diver receives constant feedback from an underwater tablet to acknowledge or abort the mission at any time. The objective is to prevent the AUV from executing unnecessary, infeasible or potentially harmful motions. Experimental results under different environmental conditions in archaeological exploration and bridge inspection applications show that the system performs well in the field.Comment: Workshop on Human-Aiding Robotics. International Conference on Intelligent Robots and Systems 2018 (IROS

    The Next Best Underwater View

    Full text link
    To image in high resolution large and occlusion-prone scenes, a camera must move above and around. Degradation of visibility due to geometric occlusions and distances is exacerbated by scattering, when the scene is in a participating medium. Moreover, underwater and in other media, artificial lighting is needed. Overall, data quality depends on the observed surface, medium and the time-varying poses of the camera and light source. This work proposes to optimize camera/light poses as they move, so that the surface is scanned efficiently and the descattered recovery has the highest quality. The work generalizes the next best view concept of robot vision to scattering media and cooperative movable lighting. It also extends descattering to platforms that move optimally. The optimization criterion is information gain, taken from information theory. We exploit the existence of a prior rough 3D model, since underwater such a model is routinely obtained using sonar. We demonstrate this principle in a scaled-down setup

    Background Subtraction in Real Applications: Challenges, Current Models and Future Directions

    Full text link
    Computer vision applications based on videos often require the detection of moving objects in their first step. Background subtraction is then applied in order to separate the background and the foreground. In literature, background subtraction is surely among the most investigated field in computer vision providing a big amount of publications. Most of them concern the application of mathematical and machine learning models to be more robust to the challenges met in videos. However, the ultimate goal is that the background subtraction methods developed in research could be employed in real applications like traffic surveillance. But looking at the literature, we can remark that there is often a gap between the current methods used in real applications and the current methods in fundamental research. In addition, the videos evaluated in large-scale datasets are not exhaustive in the way that they only covered a part of the complete spectrum of the challenges met in real applications. In this context, we attempt to provide the most exhaustive survey as possible on real applications that used background subtraction in order to identify the real challenges met in practice, the current used background models and to provide future directions. Thus, challenges are investigated in terms of camera, foreground objects and environments. In addition, we identify the background models that are effectively used in these applications in order to find potential usable recent background models in terms of robustness, time and memory requirements.Comment: Submitted to Computer Science Revie

    Underwater Color Restoration Using U-Net Denoising Autoencoder

    Full text link
    Visual inspection of underwater structures by vehicles, e.g. remotely operated vehicles (ROVs), plays an important role in scientific, military, and commercial sectors. However, the automatic extraction of information using software tools is hindered by the characteristics of water which degrade the quality of captured videos. As a contribution for restoring the color of underwater images, Underwater Denoising Autoencoder (UDAE) model is developed using a denoising autoencoder with U-Net architecture. The proposed network takes into consideration the accuracy and the computation cost to enable real-time implementation on underwater visual tasks using end-to-end autoencoder network. Underwater vehicles perception is improved by reconstructing captured frames; hence obtaining better performance in underwater tasks. Related learning methods use generative adversarial networks (GANs) to generate color corrected underwater images, and to our knowledge this paper is the first to deal with a single autoencoder capable of producing same or better results. Moreover, image pairs are constructed for training the proposed network, where it is hard to obtain such dataset from underwater scenery. At the end, the proposed model is compared to a state-of-the-art method.Comment: 6 pages, 8 figure

    Multi-scale CNN stereo and pattern removal technique for underwater active stereo system

    Full text link
    Demands on capturing dynamic scenes of underwater environments are rapidly growing. Passive stereo is applicable to capture dynamic scenes, however the shape with textureless surfaces or irregular reflections cannot be recovered by the technique. In our system, we add a pattern projector to the stereo camera pair so that artificial textures are augmented on the objects. To use the system at underwater environments, several problems should be compensated, i.e., refraction, disturbance by fluctuation and bubbles. Further, since surface of the objects are interfered by the bubbles, projected patterns, etc., those noises and patterns should be removed from captured images to recover original texture. To solve these problems, we propose three approaches; a depth-dependent calibration, Convolutional Neural Network(CNN)-stereo method and CNN-based texture recovery method. A depth-dependent calibration is our analysis to find the acceptable depth range for approximation by center projection to find the certain target depth for calibration. In terms of CNN stereo, unlike common CNNbased stereo methods which do not consider strong disturbances like refraction or bubbles, we designed a novel CNN architecture for stereo matching using multi-scale information, which is intended to be robust against such disturbances. Finally, we propose a multi-scale method for bubble and a projected-pattern removal method using CNNs to recover original textures. Experimental results are shown to prove the effectiveness of our method compared with the state of the art techniques. Furthermore, reconstruction of a live swimming fish is demonstrated to confirm the feasibility of our techniques.Comment: International Conference on 3D Vision 201

    Proofs of the Technical Results Justifying an Algorithm of Reactive 3D Navigation for a Surface Scan by a Nonholonomic Mobile Robot

    Full text link
    A single nonholonomic under-actuated mobile robot with a bounded control range travels in a 3D workspace. This workspace also hosts a compact unknown domain with a smooth boundary. The robot has access to the horizontal distance to this domain and to a certain direction (typically, vertical) in the space, along with its coordinate (typically, altitude) in this direction. We present a new navigation law that drives the robot to the desired distance to the domain and ensures subsequent full scan of its surface within a desired range of "altitudes". The proposed strategy is computationally inexpensive and achieves full scan at the lowest control level via generating the current control as a simple, reflex-like reaction to the current observation. The paper presents and proves key technical facts underlying mathematically rigorous analysis and justification of the proposed guidance approach
    • …
    corecore