2,536 research outputs found

    Intelligent deployment strategies for passive underwater sensor networks

    Get PDF
    Passive underwater sensor networks are often used to monitor a general area of the ocean, a port or military installation, or to detect underwater vehicles near a high value unit at sea, such as a fuel ship or aircraft carrier. Deploying an underwater sensor network across a large area of interest (AOI), for military surveillance purposes, is a significant challenge due to the inherent difficulties posed by the underwater channel in terms of sensing and communications between sensors. Moreover, monetary constraints, arising from the high cost of these sensors and their deployment, limit the number of available sensors. As a result, sensor deployment must be done as efficiently as possible. The objective of this work is to develop a deployment strategy for passive underwater sensors in an area clearance scenario, where there is no apparent target for an adversary to gravitate towards, such as a ship or a port, while considering all factors pertinent to underwater sensor deployment. These factors include sensing range, communications range, monetary costs, link redundancy, range dependence, and probabilistic visitation. A complete treatment of the underwater sensor deployment problem is presented in this work from determining the purpose of the sensor field to physically deploying the sensors. Assuming a field designer is given a suboptimal number of sensors, they must be methodically allocated across an AOI. The Game Theory Field Design (GTFD) model, proposed in this work, is able to accomplish this task by evaluating the acoustic characteristics across the AOI and allocating sensors accordingly. Since GTFD considers only circular sensing coverage regions, an extension is proposed to consider irregularly shaped regions. Sensor deployment locations are planned using a proposed evolutionary approach, called the Underwater Sensor Deployment Evolutionary Algorithm, which utilizes two suitable network topologies, mesh and cluster. The effects of these topologies, and a sensor\u27s communications range, on the sensing capabilities of a sensor field, are also investigated. Lastly, the impact of deployment imprecision on the connectivity of an underwater sensor field, using a mesh topology, is analyzed, for cases where sensor locations after deployment do not exactly coincide with planned sensor locations

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure

    The Deployment in the Wireless Sensor Networks: Methodologies, Recent Works and Applications

    Get PDF
    International audienceThe wireless sensor networks (WSN) is a research area in continuous evolution with a variety of application contexts. Wireless sensor networks pose many optimization problems, particularly because sensors have limited capacity in terms of energy, processing and memory. The deployment of sensor nodes is a critical phase that significantly affects the functioning and performance of the network. Often, the sensors constituting the network cannot be accurately positioned, and are scattered erratically. To compensate the randomness character of their placement, a large number of sensors is typically deployed, which also helps to increase the fault tolerance of the network. In this paper, we are interested in studying the positioning and placement of sensor nodes in a WSN. First, we introduce the problem of deployment and then we present the latest research works about the different proposed methods to solve this problem. Finally, we mention some similar issues related to the deployment and some of its interesting applications

    Multi-objective optimization of confidence-based localization in large-scale underwater robotic swarms.

    Get PDF
    Localization in large-scale underwater swarm robotic systems has increasingly attracted research and industry communities’ attention. An optimized confidence-based localization algorithm is proposed for improving localization coverage and accuracy by promoting robots with high confidence of location estimates to references for their neighboring robots. Confidence update rules based on Bayes filters are proposed based on localization methods’ error characteristics where expected localization error is generated based on measurements such as operational depth and traveled distance. Parameters of the proposed algorithm are then optimized using the Evolutionary Multi-objective Optimization algorithm NSGA-II for localization error and trilateration utilization minimization while maximizing localization confidence and Ultra-Short Base Line utilization. Simulation studies show that a wide localization coverage can be achieved using a single Ultra-Short Base Line system and localization mean error can be reduced by over 45% when algorithm’s parameters are optimized in an underwater swarm of 100 robots

    Cooperative localisation in underwater robotic swarms for ocean bottom seismic imaging.

    Get PDF
    Spatial information must be collected alongside the data modality of interest in wide variety of sub-sea applications, such as deep sea exploration, environmental monitoring, geological and ecological research, and samples collection. Ocean-bottom seismic surveys are vital for oil and gas exploration, and for productivity enhancement of an existing production facility. Ocean-bottom seismic sensors are deployed on the seabed to acquire those surveys. Node deployment methods used in industry today are costly, time-consuming and unusable in deep oceans. This study proposes the autonomous deployment of ocean-bottom seismic nodes, implemented by a swarm of Autonomous Underwater Vehicles (AUVs). In autonomous deployment of ocean-bottom seismic nodes, a swarm of sensor-equipped AUVs are deployed to achieve ocean-bottom seismic imaging through collaboration and communication. However, the severely limited bandwidth of underwater acoustic communications and the high cost of maritime assets limit the number of AUVs that can be deployed for experiments. A holistic fuzzy-based localisation framework for large underwater robotic swarms (i.e. with hundreds of AUVs) to dynamically fuse multiple position estimates of an autonomous underwater vehicle is proposed. Simplicity, exibility and scalability are the main three advantages inherent in the proposed localisation framework, when compared to other traditional and commonly adopted underwater localisation methods, such as the Extended Kalman Filter. The proposed fuzzy-based localisation algorithm improves the entire swarm mean localisation error and standard deviation (by 16.53% and 35.17% respectively) at a swarm size of 150 AUVs when compared to the Extended Kalman Filter based localisation with round-robin scheduling. The proposed fuzzy based localisation method requires fuzzy rules and fuzzy set parameters tuning, if the deployment scenario is changed. Therefore a cooperative localisation scheme that relies on a scalar localisation confidence value is proposed. A swarm subset is navigationally aided by ultra-short baseline and a swarm subset (i.e. navigation beacons) is configured to broadcast navigation aids (i.e. range-only), once their confidence values are higher than a predetermined confidence threshold. The confidence value and navigation beacons subset size are two key parameters for the proposed algorithm, so that they are optimised using the evolutionary multi-objective optimisation algorithm NSGA-II to enhance its localisation performance. Confidence value-based localisation is proposed to control the cooperation dynamics among the swarm agents, in terms of aiding acoustic exteroceptive sensors. Given the error characteristics of a commercially available ultra-short baseline system and the covariance matrix of a trilaterated underwater vehicle position, dead reckoning navigation - aided by Extended Kalman Filter-based acoustic exteroceptive sensors - is performed and controlled by the vehicle's confidence value. The proposed confidence-based localisation algorithm has significantly improved the entire swarm mean localisation error when compared to the fuzzy-based and round-robin Extended Kalman Filter-based localisation methods (by 67.10% and 59.28% respectively, at a swarm size of 150 AUVs). The proposed fuzzy-based and confidence-based localisation algorithms for cooperative underwater robotic swarms are validated on a co-simulation platform. A physics-based co-simulation platform that considers an environment's hydrodynamics, industrial grade inertial measurement unit and underwater acoustic communications characteristics is implemented for validation and optimisation purposes

    An energy aware scheme for layered chain in underwater wireless sensor networks using genetic algorithm

    Get PDF
    Extending the network lifetime is a very challenging problem that needs to be taken into account during routing data in wireless sensor networks in general and particularly in underwater wireless sensor networks (UWSN). For this purpose, the present paper proposes a multilayer chain based on genetic algorithm routing (MCGA) for routing data from nodes to the sink. This algorithm consists to create a limited number of local chains constructed by using genetic algorithm in order to obtain the shortest path between nodes; furthermore, a leader node (LN) is elected in each chain followed by constructing a global chain containing LNs. The selection of the LN in the closest chain to the sink is as follows: Initially, the closest node to sink is elected LN in this latter because all nodes have initially the same energy value; then the future selection of the LN is based on the residual energy of the nodes. LNs in the other chains are selected based on the proximity to the previous LNs. Data transmission is performed in two steps: intra-chain transmission and inter-chain transmission. Furthermore, MCGA is simulated for different scenarios of mobility and density of nodes in the networks. The performance evaluation of the proposed technique shows a considerable reduction in terms of energy consumption and network lifespan
    • …
    corecore