231 research outputs found

    DRASIC: Distributed Recurrent Autoencoder for Scalable Image Compression

    Full text link
    We propose a new architecture for distributed image compression from a group of distributed data sources. The work is motivated by practical needs of data-driven codec design, low power consumption, robustness, and data privacy. The proposed architecture, which we refer to as Distributed Recurrent Autoencoder for Scalable Image Compression (DRASIC), is able to train distributed encoders and one joint decoder on correlated data sources. Its compression capability is much better than the method of training codecs separately. Meanwhile, the performance of our distributed system with 10 distributed sources is only within 2 dB peak signal-to-noise ratio (PSNR) of the performance of a single codec trained with all data sources. We experiment distributed sources with different correlations and show how our data-driven methodology well matches the Slepian-Wolf Theorem in Distributed Source Coding (DSC). To the best of our knowledge, this is the first data-driven DSC framework for general distributed code design with deep learning

    Does Thermal Really Always Matter for RGB-T Salient Object Detection?

    Full text link
    In recent years, RGB-T salient object detection (SOD) has attracted continuous attention, which makes it possible to identify salient objects in environments such as low light by introducing thermal image. However, most of the existing RGB-T SOD models focus on how to perform cross-modality feature fusion, ignoring whether thermal image is really always matter in SOD task. Starting from the definition and nature of this task, this paper rethinks the connotation of thermal modality, and proposes a network named TNet to solve the RGB-T SOD task. In this paper, we introduce a global illumination estimation module to predict the global illuminance score of the image, so as to regulate the role played by the two modalities. In addition, considering the role of thermal modality, we set up different cross-modality interaction mechanisms in the encoding phase and the decoding phase. On the one hand, we introduce a semantic constraint provider to enrich the semantics of thermal images in the encoding phase, which makes thermal modality more suitable for the SOD task. On the other hand, we introduce a two-stage localization and complementation module in the decoding phase to transfer object localization cue and internal integrity cue in thermal features to the RGB modality. Extensive experiments on three datasets show that the proposed TNet achieves competitive performance compared with 20 state-of-the-art methods.Comment: Accepted by IEEE Trans. Multimedia 2022, 13 pages, 9 figure

    An underwater image enhancement by reducing speckle noise using modified anisotropic diffusion filter

    Get PDF
    Underwater images are usually suffering from the issues of quality degradation, such as low contrast due to blurring details, color deviations, non-uniform lighting, and noise. Since last few decades, many researches are undergoing for restoration and enhancement for degraded underwater images. In this paper, we proposed a novel algorithm using modified anisotropic diffusion filter with dynamic color balancing strategy. This proposed algorithm performs based on an employing effective noise reduction as well as edge preserving technique with dynamic color correction to make uniform lighting and minimize the speckle noise. Furthermore, reanalyze the contributions and limitations of existing underwater image restoration and enhancement methods. Finally, in this research provided the detailed objective evaluations and compared with the various underwater scenarios for above said challenges also made subjective studies, which shows that our proposed method will improve the quality of the image and significantly enhanced the image

    Transformers in Small Object Detection: A Benchmark and Survey of State-of-the-Art

    Full text link
    Transformers have rapidly gained popularity in computer vision, especially in the field of object recognition and detection. Upon examining the outcomes of state-of-the-art object detection methods, we noticed that transformers consistently outperformed well-established CNN-based detectors in almost every video or image dataset. While transformer-based approaches remain at the forefront of small object detection (SOD) techniques, this paper aims to explore the performance benefits offered by such extensive networks and identify potential reasons for their SOD superiority. Small objects have been identified as one of the most challenging object types in detection frameworks due to their low visibility. We aim to investigate potential strategies that could enhance transformers' performance in SOD. This survey presents a taxonomy of over 60 research studies on developed transformers for the task of SOD, spanning the years 2020 to 2023. These studies encompass a variety of detection applications, including small object detection in generic images, aerial images, medical images, active millimeter images, underwater images, and videos. We also compile and present a list of 12 large-scale datasets suitable for SOD that were overlooked in previous studies and compare the performance of the reviewed studies using popular metrics such as mean Average Precision (mAP), Frames Per Second (FPS), number of parameters, and more. Researchers can keep track of newer studies on our web page, which is available at \url{https://github.com/arekavandi/Transformer-SOD}

    Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection

    Full text link
    By integrating complementary information from RGB image and depth map, the ability of salient object detection (SOD) for complex and challenging scenes can be improved. In recent years, the important role of Convolutional Neural Networks (CNNs) in feature extraction and cross-modality interaction has been fully explored, but it is still insufficient in modeling global long-range dependencies of self-modality and cross-modality. To this end, we introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement (PICR-Net). On the one hand, considering the prior correlation between RGB modality and depth modality, an attention-triggered cross-modality point-aware interaction (CmPI) module is designed to explore the feature interaction of different modalities with positional constraints. On the other hand, in order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation. Extensive experiments on five RGB-D SOD datasets show that the proposed network achieves competitive results in both quantitative and qualitative comparisons.Comment: Accepted by ACM MM 202
    • …
    corecore