381 research outputs found

    In-Lab demonstration of an underwater acoustic spiral source

    Get PDF
    Underwater acoustic spiral sources can generate spiral acoustic fields where the phase depends on the bearing angle. This allows estimating the bearing angle of a single hydrophone relative to a single source and implementing localization equipment, e.g., for target detection or unmanned underwater vehicle navigation, without requiring an array of hydrophones and/or projectors. A spiral acoustic source prototype made out of a single standard piezoceramic cylinder, which is able to generate both spiral and circular fields, is presented. This paper reports the prototyping process and the multi-frequency acoustic tests performed in a water tank where the spiral source was characterized in terms of the transmitting voltage response, phase, and horizontal and vertical directivity patterns. A receiving calibration method for the spiral source is proposed and showed a maximum angle error of 3° when the calibration and the operation were carried out in the same conditions and a mean angle error of up to 6° for frequencies above 25 kHz when the same conditions were not fulfilled.info:eu-repo/semantics/publishedVersio

    Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications

    Full text link
    Orbital angular momentum (OAM) has aroused a widespread interest in many fields, especially in telecommunications due to its potential for unleashing new capacity in the severely congested spectrum of commercial communication systems. Beams carrying OAM have a helical phase front and a field strength with a singularity along the axial center, which can be used for information transmission, imaging and particle manipulation. The number of orthogonal OAM modes in a single beam is theoretically infinite and each mode is an element of a complete orthogonal basis that can be employed for multiplexing different signals, thus greatly improving the spectrum efficiency. In this paper, we comprehensively summarize and compare the methods for generation and detection of optical OAM, radio OAM and acoustic OAM. Then, we represent the applications and technical challenges of OAM in communications, including free-space optical communications, optical fiber communications, radio communications and acoustic communications. To complete our survey, we also discuss the state of art of particle manipulation and target imaging with OAM beams

    Transcranial Ultrasound Holograms for the Blood-Brain Barrier Opening

    Full text link
    [ES] El tratamiento de enfermedades neurológicas está muy limitado por la ineficiente penetración de los fármacos en el tejido cerebral dañado debido a la barrera hematoencefálica (BHE), lo que imposibilita mejorar la salud del paciente. La BHE es un mecanismo de protección natural para evitar la difusión de agentes potencialmente peligrosas para el sistema nervioso central. No obstante, la BHE se puede inhibir mediante ultrasonidos focalizados e inyección de microburbujas de forma segura, localizada y transitoria, una tecnología empleada mundialmente. La principal ventaja es su carácter no invasivo, siendo así muy atractiva y cómoda para el paciente. Normalmente, la zona cerebral enferma se trata en su parte central empleando un único foco. Sin embargo, enfermedades como el Alzheimer o el Parkinson requieren un tratamiento sobre estructuras de geometría compleja y tamaño elevado, situadas en ambos hemisferios cerebrales. Por tanto, la tecnología actual está muy limitada al no cumplir dichos requisitos. Esta tesis doctoral tiene como objetivo el desarrollo de una técnica novedosa, basada en hologramas acústicos, para resolver las limitaciones presentes en los tratamientos neurológicos empleando ultrasonidos. Se estudian las lentes acústicas holográficas impresas en 3D, que acopladas a un transductor mono-elemento, permiten el control preciso del frente de onda ultrasónico tanto para (1) compensar las distorsiones que sufre el haz hasta alcanzar el cerebro, como (2) focalizarlo simultáneamente en regiones múltiples y de geometría compleja o formando de vórtices acústicos, proporcionando así efectividad en tiempo y coste. Por ello, la investigación desarrollada en esta tesis abre un camino prometedor en el campo de la biomedicina que permitirá mejorar los tratamientos neurológicos, además de aplicaciones en neuroestimulación o ablación térmica del tejido.[CA] El tractament de malalties neurològiques està molt limitat per la ineficient penetració del fàrmac en el teixit cerebral danyat a causa de la barrera hematoencefàlica (BHE), i així no és possible una millora de salut del pacient. La BHE és un mecanisme de protecció natural per a evitar la difusió d'agents potencialment perillosos per al Sistema Nervios Central. No obstant això, aquesta barrera es pot inhibir mitjancant una tecnologia emprada mundialment basada en ultrasons focalitzats i injeccio de microbombolles. El principal avantatge és el seu caràcter no invasiu, sent així molt atractiva i còmoda per al pacient, i permet obrir la BHE de manera segura, localitzada i transitòria. Normalment, la zona cerebral malalta es tracta en la seua part central, emprant un unic focus. No obstant això, malalties com l'Alzheimer o el Parkinson requereixen un tractament al llarg d'estructures de geometria complexa i grandària elevada, situades en tots dos hemisferis cerebrals. Per tant, la tecnologia actual està fortament limitada al no complir amb aquests requeriments. Aquesta tesi doctoral està enfocada a investigar i desenvolupar una tècnica nova, basada en hologrames acústics, per a solucionar les limitacions presents en els tractaments neurològics. Una lent acústica holograca de baix cost impresa en 3D acoblada a un transductor d'element simple permet el control precs del front d'ona ultrasònic punt per a (1) compensar les distorsions que pateix el feix en el seu camí cap al cervell, i (2) focalització simultània del feix en regions multiples i de geometria complexa, proporcionant aix un tractament efectiu en temps i cost. Per això, la investigació desenvolupada en aquesta tesi demostra la possibilitat de realitzar qualsevol tractament neurològic, a més d'aplicacions en la neuroestimulació o l'ablació tèrmica dins del camp biomèdic.[EN] Treatments for neurological diseases are strongly limited by the inefficient penetration of therapeutic drugs into the diseased brain due to the blood-brain barrier (BBB), and therefore no health improvement can be achieved. In fact, the BBB is a protection mechanism of the human body to avoid the diffusion of potentially dangerous agents into the central nervous system. Nevertheless, this barrier can be successfully inhibited by using a worldwide spread technology based on microbubble-enhanced focused ultrasound. Its main advantage is its non-invasive nature, thus defining a patient-friendly clinical procedure that allows to disrupt the BBB in a safe, local and transient manner. Conventionally, the diseased brain structure has been targeted in its center, with a single focus. However, Alzheimer's or Parkinson's Diseases do require that ultrasound is delivered to entire, complex-geometry and large-volume structures located at both hemispheres of the brain. Therefore, current technology presents several limitations as it does not fulfill these requirements. This doctoral thesis aims to develop a novel technique based on using focused ultrasound acoustic holograms to solve the existing limitations to treat neurological diseases. In this dissertation, we study 3D-printed holographic acoustic lenses coupled to a single-element transducer that allow to accurately control the acoustic wavefront to both (1) compensate distortions suffered by the beam in its path to the brain, and (2) simultaneous focusing in multiple and complex-geometry structures or acoustic vortex generation, providing a time- and cost- efficient procedure. Therefore, the research carried out throughout this thesis opens a promising path in the biomedical field to improve the treatment for neurological diseases, neurostimulation or tissue ablation applications.Acknowledgments to the Spanish institution Generalitat Valenciana, which funding grant allowed me to develop this doctoral thesis, and as well funded my research stay at Columbia University. The development of the entire thesis was supported through grant Nª. ACIF/2017/045. Particularly, the research carried out in Chapter 3 and Chapter 4 was possible thanks to and supported through grant BEFPI/2019/075. Action co-financied by the Agència Valenciana de la Innovació through grant INNVAL10/19/016 and by the European Union through the Programa Operativo del Fondo Europeo de Desarrollo Regional (FEDER) of the Comunitat Valenciana 2014-2020 (IDIFEDER/2018/022).Jiménez Gambín, S. (2021). Transcranial Ultrasound Holograms for the Blood-Brain Barrier Opening [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171373TESI

    Friction Stir Welding Manufacturing Advancement by On-Line High Temperature Phased Array Ultrasonic Testing and Correlation of Process Parameters to Joint Quality

    Get PDF
    Welding, a manufacturing process for joining, is widely employed in aerospace, aeronautical, maritime, nuclear, and automotive industries. Optimizing these techniques are paramount to continue the development of technologically advanced structures and vehicles. In this work, the manufacturing technique of friction stir welding (FSW) with aluminum alloy (AA) 2219-T87 is investigated to improve understanding of the process and advance manufacturing efficiency. AAs are widely employed in aerospace applications due to their notable strength and ductility. The extension of good strength and ductility to cryogenic temperatures make AAs suitable for rocket oxidizer and fuel tankage. AA-2219, a descendent of the original duralumin used to make Zeppelin frames, is currently in wide use in the aerospace industry. FSW, a solid-state process, joins the surfaces of a seam by stirring the surfaces together with a pin while the metal is held in place by a shoulder. The strength and ductility of friction stir (FS) welds depends upon the weld parameters, chiefly spindle rotational speed, feedrate, and plunge force (pinch force for self-reacting welds). Between conditions that produce defects, it appears in this study as well as those studies of which we are aware that FS welds show little variation in strength; however, outside this process parameter “window” the weld strength drops markedly. Manufacturers operate within this process parameter window, and the parameter establishment phase of welding operations constitutes the establishment of this process parameter window. The work herein aims to improve the manufacturing process of FSW by creating a new process parameter window selection methodology, creation of a weld quality prediction model, developing an analytical defect suppression model, and constructing a high temperature on-line phased array ultrasonic testing system for quality inspection

    Design of Acoustic Lenses for Ultrasound Focusing Applications

    Full text link
    Tesis por compendio[ES] La focalización de ultrasonidos tiene muchas aplicaciones en una gran variedad de áreas tanto científicas como industriales. Los ultrasonidos focalizados son una de las herramientas principales usada por médicos en todo el mundo para obtener imágenes biomédicas de diferentes tipos de tejidos y órganos de manera no invasiva. En las últimas décadas, el uso de ultrasonidos focalizados de alta intensidad (HIFU, por sus siglas en inglés) ha surgido como una de las técnicas principales para el tratamiento de cáncer mediante la ablación térmica de tumores de manera no invasiva. Además, los ultrasonidos focalizados están emergiendo en los últimos años como uno de los métodos más prometedores para el tratamiento de las enfermedades cerebrales, con la aparición de nuevas técnicas disruptivas como la apertura reversible de la barrera hematoencefálica o la neuromodulación. En entornos industriales, los ultrasonidos son ampliamente utilizados como uno de los métodos principales para la evaluación no destructiva de materiales y estructuras, debido a que las ondas acústicas pueden penetrar en los objetos a distancias donde la luz no puede debido a la elevada absorción y dispersión. En este sentido, diseñar estructuras capaces de focalizar ultrasonidos es de una gran relevancia tanto para la comunidad científica como para los sectores médicos e industriales. Esta tesis presenta nuevos diseños de lentes acústicas capaces de controlar los parámetros principales del haz de ultrasonidos focalizados, proporcionando diferentes tipos de perfiles de focalización adecuados para una gran variedad de aplicaciones y escenarios. En particular, se han diseñado y adaptado al campo de los ultrasonidos las lentes de Fresnel (Fresnel Zone Plates, FZPs), ampliamente utilizadas en el campo de la óptica. Se ha presentado una nueva técnica de modulación espacio-temporal capaz de controlar la posición del foco de ultrasonidos tanto en espacio como en tiempo, aumentando así la versatilidad de este tipo de dispositivos. También se ha demostrado el funcionamiento en el campo de la acústica de nuevos diseños basados en aplicar secuencias binarias a una lente de Fresnel convencional, como las secuencias fractales de Cantor o las secuencias de M-bonacci generalizadas, capaces de modificar las propiedades de focalización de las lentes, incluyendo el número, posición y forma de los focos acústicos. Además, se introduce un nuevo diseño de lentes esféricas rellenas de líquido capaces de generar jets ultrasónicos, con mucho potencial en aplicaciones de imagen de alta resolución en campo cercano. Se ha demostrado que, cambiando el líquido interno de la lente o ajustando el ratio de mezcla entre dos líquidos, se pueden controlar los parámetros principales del jet. Los diseños propuestos en la tesis han sido validados tanto empleando simulaciones numéricas como realizando medidas experimentales, allanando el camino para el uso de este tipo de estructuras en aplicaciones de focalización de ultrasonidos.[CA] La focalització d'ultrasons té moltes aplicacions en moltes àrees científiques i industrials. Els ultrasons focalitzats són una de les eines principals utilitzada per metges a tot el món per obtenir imatges biomèdiques de diferents tipus de teixits i òrgans de manera no invasiva. En les últimes dècades, els ultrasons focalitzats d'alta intensitat (HIFU, per les seues sigles en anglès) han aparegut com una de les tècniques principals per al tractament de càncer mitjançant l'ablació de tumors de manera no invasiva. A més, els ultrasons focalitzats estan emergint en els últims anys com un dels mètodes més prometedors per al tractament de les malalties cerebrals, amb l'aparició de noves tècniques disruptives com l'obertura reversible de la barrera hematoencefàlica o la neuromodulació. En entorns industrials, els ultrasons són àmpliament utilitzats com un dels mètodes principals per a l'avaluació no destructiva de materials i estructures, pel fet que les ones acústiques poden penetrar en els objectes a distàncies on la llum no pot a causa de l'elevada absorció i dispersió. En aquest sentit, dissenyar estructures capaces de focalitzar ultrasons és d'una gran rellevància tant per a la comunitat científica com per als sectors mèdics i industrials. Aquesta tesi presenta nous dissenys de lents acústiques capaços de controlar els paràmetres principals del feix d'ultrasons focalitzats, proporcionant diferents tipus de perfils de focalització adequats per a una gran varietat d'aplicacions i escenaris. En particular, s'han dissenyat i adaptat al camp dels ultrasons les lents de Fresnel (Fresnel Zone Plates, FZPs), àmpliament utilitzades en el camp de l'òptica. S'ha presentat una nova tècnica de modulació espai-temporal capaç de controlar la posició del focus d'ultrasons tant en espai com en temps, augmentant així la versatilitat d'aquest tipus de dispositius. També s'ha demostrat el funcionament en el camp de l'acústica de nous dissenys basats en aplicar seqüències binàries a una lent de Fresnel convencional, com les seqüències fractals de Cantor o les seqüències de M-bonacci generalitzades, capaces de modificar les propietats de focalització de les lents, incloent el nombre, posició i forma dels focus acústics. A més, s'introdueix un nou disseny de lents esfèriques plenes de líquid capaces de generar jets ultrasònics, amb molt potencial en aplicacions d'imatge d'alta resolució en camp proper. S'ha demostrat que, canviant el líquid intern de la lent o ajustant la ràtio de barreja entre dos líquids, es poden controlar els paràmetres principals del jet. Els dissenys proposats en la tesi han estat validats tant emprant simulacions numèriques com realitzant mesures experimentals, aplanant el camí per a l'ús d'aquest tipus d'estructures en aplicacions de focalització d'ultrasons.[EN] Ultrasound focusing has many applications in a wide range of fields. Focused ultrasound is one of the main tools used by doctors all over the world to obtain biomedical images of different kind of tissues non-invasively. In the past decades, high intensity focused ultrasound (HIFU) appeared as one of the fundamental techniques for cancer treatment through non-invasive thermal tumor ablation. In addition, focused ultrasonic waves are recently emerging as one of the main tools to treat brain diseases, with novel disruptive techniques such as blood-brain barrier opening or neuromodulation. In industrial environments, ultrasonic waves are widely employed as one of the primary methods for the non-destructive evaluation (NDE) of materials and structures, as acoustic waves are able to penetrate deep into objects otherwise opaque using optical techniques. In this sense, designing structures capable of focusing ultrasonic waves is of great interest and relevance for the scientific, the industrial, and the biomedical sectors. This thesis devises new designs of acoustic lenses capable of controlling the main parameters of the focused ultrasound beam, achieving different kinds of focusing profiles suitable for a wide variety of scenarios. In particular, Fresnel Zone Plates (FZPs), commonly used in optics, are designed and adapted to the ultrasound domain. A novel spatio-temporal modulation technique capable of controlling the ultrasound focus location in both time and space is presented, increasing the versatility of this kind of devices. New design techniques based on applying a binary sequence to FZPs are also demonstrated, such as Cantor fractal sequences or generalized M-bonacci sequences, which modify the focusing properties of the lens, including the number, location, and shape of the different acoustic foci. In addition, acoustic jets generated by liquid-filled spherical lenses are devised for near-field high resolution imaging, demonstrating their applicability in the ultrasound domain. It is demonstrated that, by changing the inner liquid of the spherical lens or by tuning the mixing ratio between two liquids, the main focal parameters of the ultrasonic jet can be accurately controlled. The proposed designs are validated using both numerical simulations and experimental measurements, paving the way for the use of these kind of structures in focused ultrasound applications.This work would not have been possible without the following funding sources: PAID-01-18 personal FPI grant from Universitat Politècnica de València; Spanish government MINECO TEC2015-70939-R project; Spanish government MICINN RTI2018-100792-B-I00 project; Generalitat Valenciana AICO/2020/139 project.Pérez López, S. (2021). Design of Acoustic Lenses for Ultrasound Focusing Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/179907TESISCompendi

    Effects of errorless learning on the acquisition of velopharyngeal movement control

    Get PDF
    Session 1pSC - Speech Communication: Cross-Linguistic Studies of Speech Sound Learning of the Languages of Hong Kong (Poster Session)The implicit motor learning literature suggests a benefit for learning if errors are minimized during practice. This study investigated whether the same principle holds for learning velopharyngeal movement control. Normal speaking participants learned to produce hypernasal speech in either an errorless learning condition (in which the possibility for errors was limited) or an errorful learning condition (in which the possibility for errors was not limited). Nasality level of the participants’ speech was measured by nasometer and reflected by nasalance scores (in %). Errorless learners practiced producing hypernasal speech with a threshold nasalance score of 10% at the beginning, which gradually increased to a threshold of 50% at the end. The same set of threshold targets were presented to errorful learners but in a reversed order. Errors were defined by the proportion of speech with a nasalance score below the threshold. The results showed that, relative to errorful learners, errorless learners displayed fewer errors (50.7% vs. 17.7%) and a higher mean nasalance score (31.3% vs. 46.7%) during the acquisition phase. Furthermore, errorless learners outperformed errorful learners in both retention and novel transfer tests. Acknowledgment: Supported by The University of Hong Kong Strategic Research Theme for Sciences of Learning © 2012 Acoustical Society of Americapublished_or_final_versio

    Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens

    Full text link
    [EN] Ultrasound focusing is a hot topic due to its multiple applications in many fields, including biomedical imaging, thermal ablation of cancerous tissues, and non destructive testing in industrial environments. In such applications, the ability to control the focal distance of the ultrasound device in real-time is a key advantage over conventional devices with fixed focal parameters. Here, we present a method to achieve multiple time-modulated ultrasound foci using a single planar monofocal Fresnel Zone Plate. The method takes advantage of the focal distance linear dependence on the operating frequency of this kind of lenses to design a sequence of contiguous modulated rectangular pulses that achieve different focal distances and intensities as a function of time. Both numerical simulations and experimental results are presented, demonstrating the feasibility and potential of this technique.This work has been supported by Spanish MICINN project number RTI2018-100792-B-I00 and Generalitat Valenciana project AICO/2020/139. S.P.-L. acknowledges financial support from Universitat Politecnica de Valencia Grant program PAID-01-18.Pérez-López, S.; Fuster Escuder, JM.; Candelas Valiente, P. (2021). Spatio-temporal ultrasound beam modulation to sequentially achieve multiple foci with a single planar monofocal lens. Scientific Reports. 11(1):1-7. https://doi.org/10.1038/s41598-021-92849-xS17111Schmerr, L. W. Fundamentals of Ultrasonic Nondestructive Evaluation. Springer Series in Measurement Science and Technology (Springer International Publishing, 2016).Azhari, H. Basics of Biomedical Ultrasound for Engineers (Wiley, 2010).Fan, X. & Hynynen, K. Ultrasound surgery using multiple sonications—Treatment time considerations. Ultrasound Med. Biol. 22, 471–482. https://doi.org/10.1016/0301-5629(96)00026-9 (1996).ter Haar, G. & Coussios, C. High intensity focused ultrasound: Physical principles and devices. Int. J. Hyperth. 23, 89–104. https://doi.org/10.1080/02656730601186138 (2007).Guo, S., Jing, Y. & Jiang, X. Temperature rise in tissue ablation using multi-frequency ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 60, 1699–1707. https://doi.org/10.1109/TUFFC.2013.2751 (2013).Ebbini, E. & Cain, C. Multiple-focus ultrasound phased-array pattern synthesis: Optimal driving-signal distributions for hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 36, 540–548. https://doi.org/10.1109/58.31798 (1989).Casper, A., Liu, D. & Ebbini, E. S. Realtime control of multiple-focus phased array heating patterns based on noninvasive ultrasound thermography. IEEE Trans. Biomed. Eng. 59, 95–105. https://doi.org/10.1109/TBME.2011.2162105 (2012).Ilovitsh, A., Ilovitsh, T., Foiret, J., Stephens, D. N. & Ferrara, K. W. Simultaneous axial multifocal imaging using a single acoustical transmission: A practical implementation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 66, 273–284. https://doi.org/10.1109/TUFFC.2018.2885080 (2019).Lalonde, R., Worthington, A. & Hunt, J. Field conjugate acoustic lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 40, 592–602. https://doi.org/10.1109/58.238113 (1993).Lalonde, R. & Hunt, J. Variable frequency field conjugate lenses for ultrasound hyperthermia. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 42, 825–831. https://doi.org/10.1109/58.464838 (1995).Brown, M. D., Allen, T. J., Cox, B. T. & Treeby, B. E. Control of optically generated ultrasound fields using binary amplitude holograms. in IEEE International Ultrasonics Symposium, IUS, 1037–1040. https://doi.org/10.1109/ULTSYM.2014.0254 (IEEE, 2014).Melde, K., Mark, A. G., Qiu, T. & Fischer, P. Holograms for acoustics. Nature 537, 518–522. https://doi.org/10.1038/nature19755 (2016).Brown, M. D., Cox, B. T. & Treeby, B. E. Design of multi-frequency acoustic kinoforms. Appl. Phys. Lett. 111, 244101. https://doi.org/10.1063/1.5004040 (2017).Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M. & Camarena, F. Holograms to focus arbitrary ultrasonic fields through the skull. Phys. Rev. Appl. 12, 014016. https://doi.org/10.1103/PhysRevApplied.12.014016 (2019).Young, M. Zone plates and their aberrations. J. Opt. Soc. Am. 62, 972. https://doi.org/10.1364/JOSA.62.000972 (1972).Rodrigues Ribeiro, R. S., Dahal, P., Guerreiro, A., Jorge, P. A. S. & Viegas, J. Fabrication of Fresnel plates on optical fibres by FIB milling for optical trapping, manipulation and detection of single cells. Sci. Rep. 7, 4485. https://doi.org/10.1038/s41598-017-04490-2 (2017).Kim, H. et al. Metallic Fresnel zone plate implemented on an optical fiber facet for super-variable focusing of light. Opt. Express 25, 30290. https://doi.org/10.1364/OE.25.030290 (2017).Kirz, J. Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64, 301–309. https://doi.org/10.1364/JOSA.64.000301 (1974).Yashiro, W., Takeda, Y., Takeuchi, A., Suzuki, Y. & Momose, A. Hard-X-ray phase-difference microscopy using a fresnel zone plate and a transmission grating. Phys. Rev. Lett. 103, 180801. https://doi.org/10.1103/PhysRevLett.103.180801 (2009).Hristov, H. D. & Herben, M. H. Millimeter-wave fresnel-zone plate lens and antenna. IEEE Trans. Microw. Theory Tech. 43, 2779–2785. https://doi.org/10.1109/22.475635 (1995).Hristov, H. D. & Rodriguez, J. M. Design equation for multidielectric fresnel zone plate lens. IEEE Microw. Wirel. Components Lett. 22, 574–576. https://doi.org/10.1109/LMWC.2012.2224099 (2012).Chao, G., Auld, B. A. & Winslow, D. K. Focusing and scanning of acoustic beams with fresnel zone plates. in 1972 Ultrasonics Symposium, 140–143. https://doi.org/10.1109/ultsym.1972.196048 (IEEE, 1972).Farnow, S. A. & Auld, B. A. Acoustic fresnel zone plate transducers. Appl. Phys. Lett. 25, 681–682. https://doi.org/10.1063/1.1655359 (1974).Farnow, S. A. & Auld, B. A. An acoustic phase plate imaging device. in Acoustical Holography, Vol. 6 (ed. Booth, N.) 259–273. https://doi.org/10.1007/978-1-4615-8216-8_14 (Springer US, 1975).Yamada, K. & Shimizu, H. Planar-structure focusing lens for acoustic microscope. in Ultrasonics Symposium Proceedings, 755–758. https://doi.org/10.1109/ultsym.1985.198612 (IEEE, 1985).Calvo, D. C., Thangawng, A. L., Nicholas, M. & Layman, C. N. Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107, 014103. https://doi.org/10.1063/1.4926607 (2015).Jiménez, N., Romero-García, V., García-Raffi, L. M., Camarena, F. & Staliunas, K. Sharp acoustic vortex focusing by Fresnel-spiral zone plates. Appl. Phys. Lett. 112, 204101. https://doi.org/10.1063/1.5029424 (2018).Monsoriu, J. A. et al. Bifocal fibonacci diffractive lenses. IEEE Photon. J. 5, 3400106–3400106. https://doi.org/10.1109/JPHOT.2013.2248707 (2013).Pérez-López, S., Fuster, J. M. & Candelas, P. M-Bonacci zone plates for ultrasound focusing. Sensors 19, 4313. https://doi.org/10.3390/s19194313 (2019).Saavedra, G., Furlan, W. D. & Monsoriu, J. A. Fractal zone plates. Opt. Lett. 28, 971. https://doi.org/10.1364/ol.28.000971 (2003).Pérez-López, S., Fuster, J. M., Candelas, P. & Rubio, C. Fractal lenses based on Cantor binary sequences for ultrasound focusing applications. Ultrasonics 99, 105967. https://doi.org/10.1016/j.ultras.2019.105967 (2019).Tarrazó-Serrano, D., Pérez-López, S., Candelas, P., Uris, A. & Rubio, C. Acoustic focusing enhancement in fresnel zone plate lenses. Sci. Rep. 9, 7067. https://doi.org/10.1038/s41598-019-43495-x (2019).Fuster, J. M., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S. & Rubio, C. Analysis of fresnel zone plates focusing dependence on operating frequency. Sensors (Switzerland) 17, 2809. https://doi.org/10.3390/s17122809 (2017).Muelas-Hurtado, R. D., Ealo, J. L. & Volke-Sepúlveda, K. Active-spiral Fresnel zone plate with tunable focal length for airborne generation of focused acoustic vortices. Appl. Phys. Lett. 116, 114101. https://doi.org/10.1063/1.5137766 (2020).Xia, X. et al. Ultrasonic tunable focusing by a stretchable phase-reversal Fresnel zone plate. Appl. Phys. Lett. 117, 021904. https://doi.org/10.1063/5.0018663 (2020).Pérez-López, S., Tarrazó-Serrano, D., Dolmatov, D. O., Rubio, C. & Candelas, P. Transient analysis of fresnel zone plates for ultrasound focusing applications. Sensors 20, 6824. https://doi.org/10.3390/s20236824 (2020).Liu, D.-L. & Waag, R. Propagation and backpropagation for ultrasonic wavefront design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1–13. https://doi.org/10.1109/58.585184 (1997)
    corecore