3,741 research outputs found

    MSGNet: multi-source guidance network for fish segmentation in underwater videos

    Get PDF
    Fish segmentation in underwater videos provides basic data for fish measurements, which is vital information that supports fish habitat monitoring and fishery resources survey. However, because of water turbidity and insufficient lighting, fish segmentation in underwater videos has low accuracy and poor robustness. Most previous work has utilized static fish appearance information while ignoring fish motion in underwater videos. Considering that motion contains more detail, this paper proposes a method that simultaneously combines appearance and motion information to guide fish segmentation in underwater videos. First, underwater videos are preprocessed to highlight fish in motion, and obtain high-quality underwater optical flow. Then, a multi-source guidance network (MSGNet) is presented to segment fish in complex underwater videos with degraded visual features. To enhance both fish appearance and motion information, a non-local-based multiple co-attention guidance module (M-CAGM) is applied in the encoder stage, in which the appearance and motion features from the intra-frame salient fish and the moving fish in video sequences are reciprocally enhanced. In addition, a feature adaptive fusion module (FAFM) is introduced in the decoder stage to avoid errors accumulated in the video sequences due to blurred fish or inaccurate optical flow. Experiments based on three publicly available datasets were designed to test the performance of the proposed model. The mean pixel accuracy (mPA) and mean intersection over union (mIoU) of MSGNet were 91.89% and 88.91% respectively with the mixed dataset. Compared with those of the advanced underwater fish segmentation and video object segmentation models, the mPA and mIoU of the proposed model significantly improved. The results showed that MSGNet achieves excellent segmentation performance in complex underwater videos and can provide an effective segmentation solution for fisheries resource assessment and ocean observation. The proposed model and code are exposed via Github1

    Measurement of Micro-bathymetry with a GOPRO Underwater Stereo Camera Pair

    Get PDF
    A GO-PRO underwater stereo camera kit has been used to measure the 3D topography (bathymetry) of a patch of seafloor producing a point cloud with a spatial data density of 15 measurements per 3 mm grid square and an standard deviation of less than 1 cm A GO-PRO camera is a fixed focus, 11 megapixel, still-frame (or 1080p high-definition video) camera, whose small form-factor and water-proof housing has made it popular with sports enthusiasts. A stereo camera kit is available providing a waterproof housing (to 61 m / 200 ft) for a pair of cameras. Measures of seafloor micro-bathymetrycapable of resolving seafloor features less than 1 cm in amplitude were possible from the stereoreconstruction. Bathymetric measurements of this scale provide important ground-truth data and boundary condition information for modeling of larger scale processes whose details depend on small-scale variations. Examples include modeling of turbulent water layers, seafloor sediment transfer and acoustic backscatter from bathymetric echo sounders

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource
    • …
    corecore