88 research outputs found

    Quality Enhancement for Underwater Images using Various Image Processing Techniques: A Survey

    Get PDF
    Underwater images are essential to identify the activity of underwater objects. It played a vital role to explore and utilizing aquatic resources. The underwater images have features such as low contrast, different noises, and object imbalance due to lack of light intensity. CNN-based in-deep learning approaches have improved underwater low-resolution photos during the last decade. Nevertheless, still, those techniques have some problems, such as high MSE, PSNT and high SSIM error rate. They solve the problem using different experimental analyses; various methods are studied that effectively treat different underwater image distorted scenes and improve contrast and color deviation compared to other algorithms. In terms of the color richness of the resulting images and the execution time, there are still deficiencies with the latest algorithm. In future work, the structure of our algorithm will be further adjusted to shorten the execution time, and optimization of the color compensation method under different color deviations will also be the focus of future research. With the wide application of underwater vision in different scientific research fields, underwater image enhancement can play an increasingly significant role in the process of image processing in underwater research and underwater archaeology. Most of the target images of the current algorithms are shallow water images. When the artificial light source is added to deep water images, the raw images will face more diverse noises, and image enhancement will face more challenges. As a result, this study investigates the numerous existing systems used for quality enhancement of underwater mages using various image processing techniques. We find various gaps and challenges of current systems and build the enhancement of this research for future improvement. Aa a result of this overview is to define the future problem statement to enhance this research and overcome the challenges faced by previous researchers. On other hand also improve the accuracy in terms of reducing MSE and enhancing PSNR etc

    Recovering Depth from Still Images for Underwater Dehazing Using Deep Learning

    Get PDF
    Estimating depth from a single image is a challenging problem, but it is also interestingdue to the large amount of applications, such as underwater image dehazing. In this paper, a newperspective is provided; by taking advantage of the underwater haze that may provide a strong cue tothe depth of the scene, a neural network can be used to estimate it. Using this approach the depthmapcan be used in a dehazing method to enhance the image and recover original colors, offering abetter input to image recognition algorithms and, thus, improving the robot performance duringvision-based tasks such as object detection and characterization of the seafloor. Experiments areconducted on different datasets that cover a wide variety of textures and conditions, while using adense stereo depthmap as ground truth for training, validation and testing. The results show that theneural network outperforms other alternatives, such as the dark channel prior methods and it is ableto accurately estimate depth from a single image after a training stage with depth information

    Visibility recovery on images acquired in attenuating media. Application to underwater, fog, and mammographic imaging

    Get PDF
    136 p.When acquired in attenuating media, digital images of ten suffer from a particularly complex degradation that reduces their visual quality, hindering their suitability for further computational applications, or simply decreasing the visual pleasan tness for the user. In these cases, mathematical image processing reveals it self as an ideal tool to recover some of the information lost during the degradation process. In this dissertation,we deal with three of such practical scenarios in which this problematic is specially relevant, namely, underwater image enhancement, fogremoval and mammographic image processing. In the case of digital mammograms,X-ray beams traverse human tissue, and electronic detectorscapture them as they reach the other side. However, the superposition on a bidimensional image of three-dimensional structures produces low contraste dimages in which structures of interest suffer from a diminished visibility, obstructing diagnosis tasks. Regarding fog removal, the loss of contrast is produced by the atmospheric conditions, and white colour takes over the scene uniformly as distance increases, also reducing visibility.For underwater images, there is an added difficulty, since colour is not lost uniformly; instead, red colours decay the fastest, and green and blue colours typically dominate the acquired images. To address all these challenges,in this dissertation we develop new methodologies that rely on: a)physical models of the observed degradation, and b) the calculus of variations.Equipped with this powerful machinery, we design novel theoreticaland computational tools, including image-dependent functional energies that capture the particularities of each degradation model. These energie sare composed of different integral terms that are simultaneous lyminimized by means of efficient numerical schemes, producing a clean,visually-pleasant and use ful output image, with better contrast and increased visibility. In every considered application, we provide comprehensive qualitative (visual) and quantitative experimental results to validateour methods, confirming that the developed techniques out perform other existing approaches in the literature
    • …
    corecore