59 research outputs found

    Acousto-optic effect compensation for optical determination of the normal velocity distribution associated with acoustic transducer radiation

    Get PDF
    Author Posting. © Acoustical Society of America, 2015. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 138 (2015): 1627, doi:10.1121/1.4929372.The acousto-optic effect, in which an acoustic wave causes variations in the optical index of refraction, imposes a fundamental limitation on the determination of the normal velocity, or normal displacement, distribution on the surface of an acoustic transducer or optically reflecting pellicle by a scanning heterodyne, or homodyne, laser interferometer. A general method of compensation is developed for a pulsed harmonic pressure field, transmitted by an acoustic transducer, in which the laser beam can transit the transducer nearfield. By representing the pressure field by the Rayleigh integral, the basic equation for the unknown normal velocity on the surface of the transducer or pellicle is transformed into a Fredholm equation of the second kind. A numerical solution is immediate when the scanned points on the surface correspond to those of the surface area discretization. Compensation is also made for oblique angles of incidence by the scanning laser beam. The present compensation method neglects edge waves, or those due to boundary diffraction, as well as effects due to baffles, if present. By allowing measurement in the nearfield of the radiating transducer, the method can enable quantification of edge-wave and baffle effects on transducer radiation. A verification experiment has been designed

    New measurements techniques:Optical methods for characterizing sound fields

    Get PDF

    2D and 3D visualization of acoustic waves by optical feedback interferometry

    Get PDF
    The visualization of physical phenomena is one of the challenges that researchers are trying to overcome by designing and implementing different sensors that provide information close to realitythrough changes in one of the parameters they measure. Historically, the visualization of variations in physical phenomena has allowed for a better understanding of the problem being studied and has changed our perception of the world and ourselves forever. Over the last 300 years, in particular, many methods have been developed to visualize sound through a visual representation. In the field of acoustics, scientists have attempted to develop a visual representation of sound waves using transducers detecting two fundamental components of sound: sound pressure and particle velocity. In other words, the measurement of kinetic energy and potential, whose quantities provide information on the physical phenomenon of acoustic propagation. In this summary, we briefly present the work of the thesis entitled "2D and 3D Visualizations of Acoustic Waves by Optical Feedback Interferometry" in which a new visualization tool for acoustic phenomena was developed. This system is based on an optical sensor said reinjection in a laser diode and allows to reconstruct in 2D and 3D the image of a propagating acoustic wave. The manuscript is divided into 3 chapters: • a first chapter presents the known methods for the visualization of the acoustic phenomena and presents the context of the research carried out, • a second chapter, allows to detail the principle of measurement and its application to the realization of a two-dimensional image of the acoustic wave • finally, in the last chapter, we demonstrate how a tomographic method can be used to create a three-dimensional image

    The perceptual flow of phonetic feature processing

    Get PDF
    • …
    corecore