14,579 research outputs found

    Protein folding in high-dimensional spaces:hypergutters and the role of non-native interactions

    Get PDF
    We explore the consequences of very high dimensionality in the dynamical landscape of protein folding. Consideration of both typical range of stabilising interactions, and folding rates themselves, leads to a model of the energy hypersurface that is characterised by the structure of diffusive "hypergutters" as well as the familiar "funnels". Several general predictions result: (1) intermediate subspaces of configurations will always be visited; (2) specific but non-native interactions are important in stabilising these low-dimensional diffusive searches on the folding pathway; (3) sequential barriers will commonly be found, even in "two-state"proteins; (4) very early times will show charactreristic departures from single-exponential kinetics; (5) contributions of non-native interactions to phi-values are calculable, and may be significant. The example of a three-helix bundle is treated in more detail as an illustration. The model also shows that high-dimensional structures provide conceptual relations between the "folding funnel", "diffusion-collision", "nucleation-condensation" and "topomer search" models of protein folding. It suggests that kinetic strategies for fast folding may be encoded rather generally in non-native, rather than native interactions. The predictions are related to very recent findings in experiment and simulation.Comment: Submitted to Biophys.

    Phase Diagrams for Sonoluminescing Bubbles

    Get PDF
    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration vs forcing pressure state space and also in the ambient radius vs gas concentration and vs forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing in the bubble and two kinds of instabilities, namely (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa∼1.2−1.5P_a \sim 1.2 - 1.5atm and low gas concentration of less than 0.4%0.4\% of the saturation. The upper concentration threshold becomes smaller with increasing forcing. Our results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. -- All statements are based on the Rayleigh-Plesset ODE approximation of the bubble dynamics, extended in an adiabatic approximation to include mass diffusion effects. This approximation is the only way to explore considerable portions of parameter space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic approximation by comparison with the full numerical solution of the advection diffusion PDE and find good agreement.Comment: Phys. Fluids, in press; latex; 46 pages, 16 eps-figures, small figures tarred and gzipped and uuencoded; large ones replaced by dummies; full version can by obtained from: http://staff-www.uni-marburg.de/~lohse

    Metaplex networks: influence of the exo-endo structure of complex systems on diffusion

    Get PDF
    In a complex system the interplay between the internal structure of its entities and their interconnection may play a fundamental role in the global functioning of the system. Here, we define the concept of metaplex, which describes such trade-off between internal structure of entities and their interconnections. We then define a dynamical system on a metaplex and study diffusive processes on them. We provide analytical and computational evidences about the role played by the size of the nodes, the location of the internal coupling areas, and the strength and range of the coupling between the nodes on the global dynamics of metaplexes. Finally, we extend our analysis to two real-world metaplexes: a landscape and a brain metaplex. We corroborate that the internal structure of the nodes in a metaplex may dominate the global dynamics (brain metaplex) or play a regulatory role (landscape metaplex) to the influence of the interconnection between nodes.Comment: 28 pages, 19 figure

    Schwinger-Keldysh Approach to Disordered and Interacting Electron Systems: Derivation of Finkelstein's Renormalization Group Equations

    Full text link
    We develop a dynamical approach based on the Schwinger-Keldysh formalism to derive a field-theoretic description of disordered and interacting electron systems. We calculate within this formalism the perturbative RG equations for interacting electrons expanded around a diffusive Fermi liquid fixed point, as obtained originally by Finkelstein using replicas. The major simplifying feature of this approach, as compared to Finkelstein's is that instead of N→0N \to 0 replicas, we only need to consider N=2 species. We compare the dynamical Schwinger-Keldysh approach and the replica methods, and we present a simple and pedagogical RG procedure to obtain Finkelstein's RG equations.Comment: 22 pages, 14 figure

    Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis

    Full text link
    Database theory and database practice are typically the domain of computer scientists who adopt what may be termed an algorithmic perspective on their data. This perspective is very different than the more statistical perspective adopted by statisticians, scientific computers, machine learners, and other who work on what may be broadly termed statistical data analysis. In this article, I will address fundamental aspects of this algorithmic-statistical disconnect, with an eye to bridging the gap between these two very different approaches. A concept that lies at the heart of this disconnect is that of statistical regularization, a notion that has to do with how robust is the output of an algorithm to the noise properties of the input data. Although it is nearly completely absent from computer science, which historically has taken the input data as given and modeled algorithms discretely, regularization in one form or another is central to nearly every application domain that applies algorithms to noisy data. By using several case studies, I will illustrate, both theoretically and empirically, the nonobvious fact that approximate computation, in and of itself, can implicitly lead to statistical regularization. This and other recent work suggests that, by exploiting in a more principled way the statistical properties implicit in worst-case algorithms, one can in many cases satisfy the bicriteria of having algorithms that are scalable to very large-scale databases and that also have good inferential or predictive properties.Comment: To appear in the Proceedings of the 2012 ACM Symposium on Principles of Database Systems (PODS 2012
    • …
    corecore