120 research outputs found

    Virtual-Mobile-Core Placement for Metro Network

    Full text link
    Traditional highly-centralized mobile core networks (e.g., Evolved Packet Core (EPC)) need to be constantly upgraded both in their network functions and backhaul links, to meet increasing traffic demands. Network Function Virtualization (NFV) is being investigated as a potential cost-effective solution for this upgrade. A virtual mobile core (here, virtual EPC, vEPC) provides deployment flexibility and scalability while reducing costs, network-resource consumption and application delay. Moreover, a distributed deployment of vEPC is essential for emerging paradigms like Multi-Access Edge Computing (MEC). In this work, we show that significant reduction in networkresource consumption can be achieved as a result of optimal placement of vEPC functions in metro area. Further, we show that not all vEPC functions need to be distributed. In our study, for the first time, we account for vEPC interactions in both data and control planes (Non-Access Stratum (NAS) signaling procedure Service Chains (SCs) with application latency requirements) using a detailed mathematical model

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    OpenEPC Integration within 5GTN as an NFV proof of concept

    Get PDF
    Abstract. Gone are the days, when a hardware is changed on every malfunctioning and the whole operation either stays down or load on the replacing hardware becomes too much which ultimately compromises the QoS. The IT industry is mature enough to tackle problems regarding scalability, space utilization, energy consumption, cost, agility and low availability. The expected throughput and network latency with 5G in the cellular Telecommunication Networks seems to be unachievable with the existing architecture and resources. Network Function Virtualization promises to merge IT and Telecommunications in such an efficient way that the expected results could be achieved no longer but sooner. The thesis work examines the compatibility and flexibility of a 3GPP virtual core network in a virtualization platform. The testbed is established on an LTE (Long Term Evolution) based network being already deployed and OpenEPC is added as virtual core network on it. The integration of OpenEPC in 5GTN (5TH Generation Test Network) is discussed in details in the thesis which will give an account of the possibility of implementing such a simulated vEPC (Virtual Evolved Packet Core) in a real network platform. The deployed setup is tested to check its feasibility and flexibility for a platform which could be used for NFV deployment in future. The monitoring of OpenEPC’s individual components while utilizing the major resources within them, forms the primary performance test. The CPU Load and Memory Utilization is tested on different CPU stress levels having a constant data traffic from actual UEs. At the completion of the thesis work, a consensus is built up based on the test results that the test setup can hold number of subscribers to a certain amount without any performance degradation. Moreover, the virtual core network throughput and network latency is also compared to the commercial LTE networks and theoretical maximum values on similar resources to check performance consistency OpenEPC must offer

    Emerging technologies for the genomic analysis of cancer

    Get PDF
    Cancer-cell survival, growth and metastatic potential are directed by dominant molecular signalling patterns, the components of which have been shown to be qualitatively different from their normal tissue counterparts. These signalling patterns can now be further distinguished by quantitative assessment, either at a single point in time or at intervals. This commentary will focus on the emergence of proteomic analysis which, in conjunction with the genomic expression data, is an evolving technology that one day will enable personalized therapeutic strategies that are differentially targeted against cancer

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status

    Characterization and Identification of Cloudified Mobile Network Performance Bottlenecks

    Get PDF
    This study is a first attempt to experimentally explore the range of performance bottlenecks that 5G mobile networks can experience. To this end, we leverage a wide range of measurements obtained with a prototype testbed that captures the key aspects of a cloudified mobile network. We investigate the relevance of the metrics and a number of approaches to accurately and efficiently identify bottlenecks across the different locations of the network and layers of the system architecture. Our findings validate the complexity of this task in the multi-layered architecture and highlight the need for novel monitoring approaches that intelligently fuse metrics across network layers and functions. In particular, we find that distributed analytics performs reasonably well both in terms of bottleneck identification accuracy and incurred computational and communication overhead.Comment: 17 pages, 16 figures, documentclass[journal,comsoc]{IEEEtran}, corrected titl
    • …
    corecore