77 research outputs found

    Report on "Geometry and representation theory of tensors for computer science, statistics and other areas."

    Full text link
    This is a technical report on the proceedings of the workshop held July 21 to July 25, 2008 at the American Institute of Mathematics, Palo Alto, California, organized by Joseph Landsberg, Lek-Heng Lim, Jason Morton, and Jerzy Weyman. We include a list of open problems coming from applications in 4 different areas: signal processing, the Mulmuley-Sohoni approach to P vs. NP, matchgates and holographic algorithms, and entanglement and quantum information theory. We emphasize the interactions between geometry and representation theory and these applied areas

    Even Partitions in Plethysms

    Full text link
    We prove that for all natural numbers k,n,d with k <= d and every partition lambda of size kn with at most k parts there exists an irreducible GL(d, C)-representation of highest weight 2*lambda in the plethysm Sym^k(Sym^(2n) (C^d)). This gives an affirmative answer to a conjecture by Weintraub (J. Algebra, 129 (1):103-114, 1990). Our investigation is motivated by questions of geometric complexity theory and uses ideas from quantum information theory.Comment: 9 page

    Reduced Kronecker coefficients and counter-examples to Mulmuley's strong saturation conjecture SH

    Get PDF
    We provide counter-examples to Mulmuley's strong saturation conjecture (strong SH) for the Kronecker coefficients. This conjecture was proposed in the setting of Geometric Complexity Theory to show that deciding whether or not a Kronecker coefficient is zero can be done in polynomial time. We also provide a short proof of the #P-hardness of computing the Kronecker coefficients. Both results rely on the connections between the Kronecker coefficients and another family of structural constants in the representation theory of the symmetric groups: Murnaghan's reduced Kronecker coefficients. An appendix by Mulmuley introduces a relaxed form of the saturation hypothesis SH, still strong enough for the aims of Geometric Complexity Theory.Comment: 25 pages. With an appendix by Ketan Mulmuley. To appear in Computational Complexity. See also http://emmanuel.jean.briand.free.fr/publications

    P versus NP and geometry

    Get PDF
    I describe three geometric approaches to resolving variants of P v. NP, present several results that illustrate the role of group actions in complexity theory, and make a first step towards completely geometric definitions of complexity classes.Comment: 20 pages, to appear in special issue of J. Symbolic. Comp. dedicated to MEGA 200

    On the complexity of computing Kronecker coefficients

    Full text link
    We study the complexity of computing Kronecker coefficients g(λ,μ,ν)g(\lambda,\mu,\nu). We give explicit bounds in terms of the number of parts \ell in the partitions, their largest part size NN and the smallest second part MM of the three partitions. When M=O(1)M = O(1), i.e. one of the partitions is hook-like, the bounds are linear in logN\log N, but depend exponentially on \ell. Moreover, similar bounds hold even when M=eO()M=e^{O(\ell)}. By a separate argument, we show that the positivity of Kronecker coefficients can be decided in O(logN)O(\log N) time for a bounded number \ell of parts and without restriction on MM. Related problems of computing Kronecker coefficients when one partition is a hook, and computing characters of SnS_n are also considered.Comment: v3: incorporated referee's comments; accepted to Computational Complexit

    No occurrence obstructions in geometric complexity theory

    Full text link
    The permanent versus determinant conjecture is a major problem in complexity theory that is equivalent to the separation of the complexity classes VP_{ws} and VNP. Mulmuley and Sohoni (SIAM J. Comput., 2001) suggested to study a strengthened version of this conjecture over the complex numbers that amounts to separating the orbit closures of the determinant and padded permanent polynomials. In that paper it was also proposed to separate these orbit closures by exhibiting occurrence obstructions, which are irreducible representations of GL_{n^2}(C), which occur in one coordinate ring of the orbit closure, but not in the other. We prove that this approach is impossible. However, we do not rule out the general approach to the permanent versus determinant problem via multiplicity obstructions as proposed by Mulmuley and Sohoni.Comment: Substantial revision. This version contains an overview of the proof of the main result. Added material on the model of power sums. Theorem 4.14 in the old version, which had a complicated proof, became the easy Theorem 5.4. To appear in the Journal of the AM
    corecore