79 research outputs found

    Contribution to reliable end-to-end communication over 5G networks using advanced techniques

    Get PDF
    5G cellular communication, especially with its hugely available bandwidth provided by millimeter-wave, is a promising technology to fulfill the coming high demand for vast data rates. These networks can support new use cases such as Vehicle to Vehicle and augmented reality due to its novel features such as network slicing along with the mmWave multi-gigabit-persecond data rate. Nevertheless, 5G cellular networks suffer from some shortcomings, especially in high frequencies because of the intermittent nature of channels when the frequency rises. Non-line of sight state is one of the significant issues that the new generation encounters. This drawback is because of the intense susceptibility of higher frequencies to blockage caused by obstacles and misalignment. This unique characteristic can impair the performance of the reliable transport layer widely deployed protocol, TCP, in attaining high throughput and low latency throughout a fair network. As a result, the protocol needs to adjust the congestion window size based on the current situation of the network. However, TCP cannot adjust its congestion window efficiently, which leads to throughput degradation of the protocol. This thesis presents a comprehensive analysis of reliable end-to-end communications in 5G networks and analyzes TCP’s behavior in one of the 3GPP’s well-known s cenarios called urban deployment. Furtherm ore, two novel TCPs bas ed on artificial intelligence have been proposed to deal with this issue. The first protocol uses Fuzzy logic, a subset of artificial intelligence, and the second one is based on deep learning. The extensively conducted simulations showed that the newly proposed protocols could attain higher performance than common TCPs, such as BBR, HighSpeed, Cubic, and NewReno in terms of throughput, RTT, and sending rate adjustment in the urban scenario. The new protocols' superiority is achieved by employing smartness in the conges tions control mechanism of TCP, which is a powerful enabler in fos tering TCP’s functionality. To s um up, the 5G network is a promising telecommunication infrastructure that will revolute various aspects of communication. However, different parts of the Internet, such as its regulations and protocol stack, will face new challenges, which need to be solved in order to exploit 5G capacity, and without intelligent rules and protocols, the high bandwidth of 5G, especially 5G mmWave will be wasted. Two novel schemes to solve the issues have been proposed based on an Artificial Intelligence subset technique called fuzzy and a machine learning-based approach called Deep learning to enhance the performance of 5G mmWave by improving the functionality of the transport layer. The obtained results indicated that the new schemes could improve the functionality of TCP by giving intelligence to the protocol. As the protocol works more smartly, it can make sufficient decisions on different conditions.La comunicació cel·lular 5G, especialment amb l’amplada de banda molt disponible que proporciona l’ona mil·limètrica, és una tecnologia prometedora per satisfer l’elevada demanda de grans velocitats de dades. Aquestes xarxes poden admetre casos d’ús nous, com ara Vehicle to Vehicle i realitat augmentada, a causa de les seves novetats, com ara el tall de xarxa juntament amb la velocitat de dades mWave de multi-gigabit per segon. Tot i això, les xarxes cel·lulars 5G pateixen algunes deficiències, sobretot en freqüències altes a causa de la naturalesa intermitent dels canals quan augmenta la freqüència. L’estat de no visió és un dels problemes significatius que troba la nova generació. Aquest inconvenient es deu a la intensa susceptibilitat de freqüències més altes al bloqueig causat per obstacles i desalineació. Aquesta característica única pot perjudicar el rendiment del protocol TCP, àmpliament desplegat, de capa de transport fiable en aconseguir un alt rendiment i una latència baixa en tota una xarxa justa. Com a resultat, el protocol ha d’ajustar la mida de la finestra de congestió en funció de la situació actual de la xarxa. Tot i això, TCP no pot ajustar la seva finestra de congestió de manera eficient, cosa que provoca una degradació del rendiment del protocol. Aquesta tesi presenta una anàlisi completa de comunicacions extrem a extrem en xarxes 5G i analitza el comportament de TCP en un dels escenaris coneguts del 3GPP anomenat desplegament urbà. A més, s'han proposat dos TCP nous basats en intel·ligència artificial per tractar aquest tema. El primer protocol utilitza la lògica Fuzzy, un subconjunt d’intel·ligència artificial, i el segon es basa en l’aprenentatge profund. Les simulacions àmpliament realitzades van mostrar que els protocols proposats recentment podrien assolir un rendiment superior als TCP habituals, com ara BBR, HighSpeed, Cubic i NewReno, en termes de rendiment, RTT i ajust d’índex d’enviament en l’escenari urbà. La superioritat dels nous protocols s’aconsegueix utilitzant la intel·ligència en el mecanisme de control de congestions de TCP, que és un poderós facilitador per fomentar la funcionalitat de TCP. En resum, la xarxa 5G és una prometedora infraestructura de telecomunicacions que revolucionarà diversos aspectes de la comunicació. No obstant això, diferents parts d’Internet, com ara les seves regulacions i la seva pila de protocols, s’enfrontaran a nous reptes, que cal resoldre per explotar la capacitat 5G, i sens regles i protocols intel·ligents, l’amplada de banda elevada de 5G, especialment 5G mmWave, pot ser desaprofitat. S'han proposat dos nous es quemes per resoldre els problemes basats en una tècnica de subconjunt d'Intel·ligència Artificial anomenada “difusa” i un enfocament basat en l'aprenentatge automàtic anomenat “Aprenentatge profund” per millorar el rendiment de 5G mmWave, millorant la funcionalitat de la capa de transport. Els resultats obtinguts van indicar que els nous esquemes podrien millorar la funcionalitat de TCP donant intel·ligència al protocol. Com que el protocol funciona de manera més intel·ligent, pot prendre decisions suficients en diferents condicionsPostprint (published version

    Managing Smartphone Testbeds with SmartLab

    Get PDF
    The explosive number of smartphones with ever growing sensing and computing capabilities have brought a paradigm shift to many traditional domains of the computing field. Re-programming smartphones and instrumenting them for application testing and data gathering at scale is currently a tedious and time-consuming process that poses significant logistical challenges. In this paper, we make three major contributions: First, we propose a comprehensive architecture, coined SmartLab1, for managing a cluster of both real and virtual smartphones that are either wired to a private cloud or connected over a wireless link. Second, we propose and describe a number of Android management optimizations (e.g., command pipelining, screen-capturing, file management), which can be useful to the community for building similar functionality into their systems. Third, we conduct extensive experiments and microbenchmarks to support our design choices providing qualitative evidence on the expected performance of each module comprising our architecture. This paper also overviews experiences of using SmartLab in a research-oriented setting and also ongoing and future development efforts

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Wireless Communication Options for a Mobile Ultrasound System

    Get PDF
    A mobile ultrasound system has been developed, which makes ultrasound examinations possible in harsh environments without reliable power sources, such as ambulances, helicopters, war zones, and disaster sites. The goal of this project was to analyze three different wireless communication technologies that could be integrated into the ultrasound system for possible utilization in remote data applications where medical information may be transmitted from the mobile unit to some centralized base station, such as an emergency room or field hospital. By incorporating wireless telecommunication technology into the design, on site medical personnel can be assisted in diagnostic decisions by remote medical experts. The wireless options that have been tested include the IEEE 802.11g standard, mobile broadband cards on a 3G cellular network, and a mobile satellite terminal. Each technology was tested in two phases. In the first phase, a client/server application was developed to measure and record general information about the quality of each link. Four different types of tests were developed to measure channel properties such as data rate, latency, inter-arrival jitter, and packet loss using various signal strengths, packet sizes, network protocols, and traffic loads. In the second phase of testing, the H.264 Scalable Video Codec (SVC) was used to transmit real-time ultrasound video streams over each of the wireless links to observe the image quality as well as the diagnostic value of the received video stream. The information gathered during both testing phases revealed the abilities and limitations of the different wireless technologies. The results from the performance testing will be valuable in the future for those trying to develop network applications for telemedicine procedures over these wireless telecommunication options. Additionally, the testing demonstrated that the system is currently capable of using H.264 SVC compression to transmit VGA quality ultrasound video at 30 frames per second (fps) over 802.11g while QVGA resolution at frame rates between 10 and 15 fps is possible over 3G and satellite networks

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    End-to-End Resilience Mechanisms for Network Transport Protocols

    Get PDF
    The universal reliance on and hence the need for resilience in network communications has been well established. Current transport protocols are designed to provide fixed mechanisms for error remediation (if any), using techniques such as ARQ, and offer little or no adaptability to underlying network conditions, or to different sets of application requirements. The ubiquitous TCP transport protocol makes too many assumptions about underlying layers to provide resilient end-to-end service in all network scenarios, especially those which include significant heterogeneity. Additionally the properties of reliability, performability, availability, dependability, and survivability are not explicitly addressed in the design, so there is no support for resilience. This dissertation presents considerations which must be taken in designing new resilience mechanisms for future transport protocols to meet service requirements in the face of various attacks and challenges. The primary mechanisms addressed include diverse end-to-end paths, and multi-mode operation for changing network conditions

    MATCOS-10

    Get PDF
    • …
    corecore