794 research outputs found

    OOGAN: Disentangling GAN with One-Hot Sampling and Orthogonal Regularization

    Full text link
    Exploring the potential of GANs for unsupervised disentanglement learning, this paper proposes a novel GAN-based disentanglement framework with One-Hot Sampling and Orthogonal Regularization (OOGAN). While previous works mostly attempt to tackle disentanglement learning through VAE and seek to implicitly minimize the Total Correlation (TC) objective with various sorts of approximation methods, we show that GANs have a natural advantage in disentangling with an alternating latent variable (noise) sampling method that is straightforward and robust. Furthermore, we provide a brand-new perspective on designing the structure of the generator and discriminator, demonstrating that a minor structural change and an orthogonal regularization on model weights entails an improved disentanglement. Instead of experimenting on simple toy datasets, we conduct experiments on higher-resolution images and show that OOGAN greatly pushes the boundary of unsupervised disentanglement.Comment: AAAI 202

    Learning Disentangled Representations with Reference-Based Variational Autoencoders

    Get PDF
    Learning disentangled representations from visual data, where different high-level generative factors are independently encoded, is of importance for many computer vision tasks. Solving this problem, however, typically requires to explicitly label all the factors of interest in training images. To alleviate the annotation cost, we introduce a learning setting which we refer to as "reference-based disentangling". Given a pool of unlabeled images, the goal is to learn a representation where a set of target factors are disentangled from others. The only supervision comes from an auxiliary "reference set" containing images where the factors of interest are constant. In order to address this problem, we propose reference-based variational autoencoders, a novel deep generative model designed to exploit the weak-supervision provided by the reference set. By addressing tasks such as feature learning, conditional image generation or attribute transfer, we validate the ability of the proposed model to learn disentangled representations from this minimal form of supervision
    • …
    corecore