1,116 research outputs found

    Augmenting CCAM Infrastructure for Creating Smart Roads and Enabling Autonomous Driving

    Get PDF
    Autonomous vehicles and smart roads are not new concepts and the undergoing development to empower the vehicles for higher levels of automation has achieved initial milestones. However, the transportation industry and relevant research communities still require making considerable efforts to create smart and intelligent roads for autonomous driving. To achieve the results of such efforts, the CCAM infrastructure is a game changer and plays a key role in achieving higher levels of autonomous driving. In this paper, we present a smart infrastructure and autonomous driving capabilities enhanced by CCAM infrastructure. Meaning thereby, we lay down the technical requirements of the CCAM infrastructure: identify the right set of the sensory infrastructure, their interfacing, integration platform, and necessary communication interfaces to be interconnected with upstream and downstream solution components. Then, we parameterize the road and network infrastructures (and automated vehicles) to be advanced and evaluated during the research work, under the very distinct scenarios and conditions. For validation, we demonstrate the machine learning algorithms in mobility applications such as traffic flow and mobile communication demands. Consequently, we train multiple linear regression models and achieve accuracy of over 94% for predicting aforementioned demands on a daily basis. This research therefore equips the readers with relevant technical information required for enhancing CCAM infrastructure. It also encourages and guides the relevant research communities to implement the CCAM infrastructure towards creating smart and intelligent roads for autonomous driving

    Multi-Technology Cooperative Driving: An Analysis Based on PLEXE

    Get PDF
    Cooperative Driving requires ultra-reliable communications, and it is now clear that no single technology will ever be able to satisfy such stringent requirements, if only because active jamming can kill (almost) any wireless technology. Cooperative driving with multiple communication technologies which complement each other opens new spaces for research and development, but also poses several challenges. The work we present tackles the fallback and recovery mechanisms that the longitudinal controlling system of a platoon of vehicles can implement as a distributed system with multiple communication interfaces. We present a protocol and procedure to correctly compute the safe transition between different controlling algorithms, down to autonomous (or manual) driving when no communication is possible. To empower the study, we also develop a new version of PLEXE, which is an integral part of this contribution as the only Open Source, free simulation tool that enables the study of such systems with a modular approach, and that we deem offers the community the possibility of boosting research in this field. The results we present demonstrate the feasibility of safe fallback, but also highlight that such complex systems require careful design choices, as naive approaches can lead to instabilities or even collisions, and that such design can only be done with appropriate in-silico experiments

    Milestones in Autonomous Driving and Intelligent Vehicles Part \uppercase\expandafter{\romannumeral1}: Control, Computing System Design, Communication, HD Map, Testing, and Human Behaviors

    Get PDF
    Interest in autonomous driving (AD) and intelligent vehicles (IVs) is growing at a rapid pace due to the convenience, safety, and economic benefits. Although a number of surveys have reviewed research achievements in this field, they are still limited in specific tasks and lack systematic summaries and research directions in the future. Our work is divided into 3 independent articles and the first part is a Survey of Surveys (SoS) for total technologies of AD and IVs that involves the history, summarizes the milestones, and provides the perspectives, ethics, and future research directions. This is the second part (Part \uppercase\expandafter{\romannumeral1} for this technical survey) to review the development of control, computing system design, communication, High Definition map (HD map), testing, and human behaviors in IVs. In addition, the third part (Part \uppercase\expandafter{\romannumeral2} for this technical survey) is to review the perception and planning sections. The objective of this paper is to involve all the sections of AD, summarize the latest technical milestones, and guide abecedarians to quickly understand the development of AD and IVs. Combining the SoS and Part \uppercase\expandafter{\romannumeral2}, we anticipate that this work will bring novel and diverse insights to researchers and abecedarians, and serve as a bridge between past and future.Comment: 18 pages, 4 figures, 3 table

    Street Smart in 5G : Vehicular Applications, Communication, and Computing

    Get PDF
    Recent advances in information technology have revolutionized the automotive industry, paving the way for next-generation smart vehicular mobility. Specifically, vehicles, roadside units, and other road users can collaborate to deliver novel services and applications that leverage, for example, big vehicular data and machine learning. Relatedly, fifth-generation cellular networks (5G) are being developed and deployed for low-latency, high-reliability, and high bandwidth communications. While 5G adjacent technologies such as edge computing allow for data offloading and computation at the edge of the network thus ensuring even lower latency and context-awareness. Overall, these developments provide a rich ecosystem for the evolution of vehicular applications, communications, and computing. Therefore in this work, we aim at providing a comprehensive overview of the state of research on vehicular computing in the emerging age of 5G and big data. In particular, this paper highlights several vehicular applications, investigates their requirements, details the enabling communication technologies and computing paradigms, and studies data analytics pipelines and the integration of these enabling technologies in response to application requirements.Peer reviewe

    On the needs and requirements arising from connected and automated driving

    Get PDF
    Future 5G systems have set a goal to support mission-critical Vehicle-to-Everything (V2X) communications and they contribute to an important step towards connected and automated driving. To achieve this goal, the communication technologies should be designed based on a solid understanding of the new V2X applications and the related requirements and challenges. In this regard, we provide a description of the main V2X application categories and their representative use cases selected based on an analysis of the future needs of cooperative and automated driving. We also present a methodology on how to derive the network related requirements from the automotive specific requirements. The methodology can be used to analyze the key requirements of both existing and future V2X use cases

    230501

    Get PDF
    Cooperative Vehicular Platooning (Co-VP) is a paradigmatic example of a Cooperative Cyber-Physical System (Co-CPS), which holds the potential to vastly improve road safety by partially removing humans from the driving task. However, the challenges are substantial, as the domain involves several topics, such as control theory, communications, vehicle dynamics, security, and traffic engineering, that must be coupled to describe, develop and validate these systems of systems accurately. This work presents a comprehensive survey of significant and recent advances in Co-VP relevant fields. We start by overviewing the work on control strategies and underlying communication infrastructures, focusing on their interplay. We also address a fundamental concern by presenting a cyber-security overview regarding these systems. Furthermore, we present and compare the primary initiatives to test and validate those systems, including simulation tools, hardware-in-the-loop setups, and vehicular testbeds. Finally, we highlight a few open challenges in the Co-VP domain. This work aims to provide a fundamental overview of highly relevant works on Co-VP topics, particularly by exposing their inter-dependencies, facilitating a guide that will support further developments in this challenging field.info:eu-repo/semantics/publishedVersio

    Automotive Intelligence Embedded in Electric Connected Autonomous and Shared Vehicles Technology for Sustainable Green Mobility

    Get PDF
    The automotive sector digitalization accelerates the technology convergence of perception, computing processing, connectivity, propulsion, and data fusion for electric connected autonomous and shared (ECAS) vehicles. This brings cutting-edge computing paradigms with embedded cognitive capabilities into vehicle domains and data infrastructure to provide holistic intrinsic and extrinsic intelligence for new mobility applications. Digital technologies are a significant enabler in achieving the sustainability goals of the green transformation of the mobility and transportation sectors. Innovation occurs predominantly in ECAS vehicles’ architecture, operations, intelligent functions, and automotive digital infrastructure. The traditional ownership model is moving toward multimodal and shared mobility services. The ECAS vehicle’s technology allows for the development of virtual automotive functions that run on shared hardware platforms with data unlocking value, and for introducing new, shared computing-based automotive features. Facilitating vehicle automation, vehicle electrification, vehicle-to-everything (V2X) communication is accomplished by the convergence of artificial intelligence (AI), cellular/wireless connectivity, edge computing, the Internet of things (IoT), the Internet of intelligent things (IoIT), digital twins (DTs), virtual/augmented reality (VR/AR) and distributed ledger technologies (DLTs). Vehicles become more intelligent, connected, functioning as edge micro servers on wheels, powered by sensors/actuators, hardware (HW), software (SW) and smart virtual functions that are integrated into the digital infrastructure. Electrification, automation, connectivity, digitalization, decarbonization, decentralization, and standardization are the main drivers that unlock intelligent vehicles' potential for sustainable green mobility applications. ECAS vehicles act as autonomous agents using swarm intelligence to communicate and exchange information, either directly or indirectly, with each other and the infrastructure, accessing independent services such as energy, high-definition maps, routes, infrastructure information, traffic lights, tolls, parking (micropayments), and finding emergent/intelligent solutions. The article gives an overview of the advances in AI technologies and applications to realize intelligent functions and optimize vehicle performance, control, and decision-making for future ECAS vehicles to support the acceleration of deployment in various mobility scenarios. ECAS vehicles, systems, sub-systems, and components are subjected to stringent regulatory frameworks, which set rigorous requirements for autonomous vehicles. An in-depth assessment of existing standards, regulations, and laws, including a thorough gap analysis, is required. Global guidelines must be provided on how to fulfill the requirements. ECAS vehicle technology trustworthiness, including AI-based HW/SW and algorithms, is necessary for developing ECAS systems across the entire automotive ecosystem. The safety and transparency of AI-based technology and the explainability of the purpose, use, benefits, and limitations of AI systems are critical for fulfilling trustworthiness requirements. The article presents ECAS vehicles’ evolution toward domain controller, zonal vehicle, and federated vehicle/edge/cloud-centric based on distributed intelligence in the vehicle and infrastructure level architectures and the role of AI techniques and methods to implement the different autonomous driving and optimization functions for sustainable green mobility.publishedVersio
    • …
    corecore