64,974 research outputs found

    Profiling user activities with minimal traffic traces

    Full text link
    Understanding user behavior is essential to personalize and enrich a user's online experience. While there are significant benefits to be accrued from the pursuit of personalized services based on a fine-grained behavioral analysis, care must be taken to address user privacy concerns. In this paper, we consider the use of web traces with truncated URLs - each URL is trimmed to only contain the web domain - for this purpose. While such truncation removes the fine-grained sensitive information, it also strips the data of many features that are crucial to the profiling of user activity. We show how to overcome the severe handicap of lack of crucial features for the purpose of filtering out the URLs representing a user activity from the noisy network traffic trace (including advertisement, spam, analytics, webscripts) with high accuracy. This activity profiling with truncated URLs enables the network operators to provide personalized services while mitigating privacy concerns by storing and sharing only truncated traffic traces. In order to offset the accuracy loss due to truncation, our statistical methodology leverages specialized features extracted from a group of consecutive URLs that represent a micro user action like web click, chat reply, etc., which we call bursts. These bursts, in turn, are detected by a novel algorithm which is based on our observed characteristics of the inter-arrival time of HTTP records. We present an extensive experimental evaluation on a real dataset of mobile web traces, consisting of more than 130 million records, representing the browsing activities of 10,000 users over a period of 30 days. Our results show that the proposed methodology achieves around 90% accuracy in segregating URLs representing user activities from non-representative URLs

    IMPACT: Investigation of Mobile-user Patterns Across University Campuses using WLAN Trace Analysis

    Full text link
    We conduct the most comprehensive study of WLAN traces to date. Measurements collected from four major university campuses are analyzed with the aim of developing fundamental understanding of realistic user behavior in wireless networks. Both individual user and inter-node (group) behaviors are investigated and two classes of metrics are devised to capture the underlying structure of such behaviors. For individual user behavior we observe distinct patterns in which most users are 'on' for a small fraction of the time, the number of access points visited is very small and the overall on-line user mobility is quite low. We clearly identify categories of heavy and light users. In general, users exhibit high degree of similarity over days and weeks. For group behavior, we define metrics for encounter patterns and friendship. Surprisingly, we find that a user, on average, encounters less than 6% of the network user population within a month, and that encounter and friendship relations are highly asymmetric. We establish that number of encounters follows a biPareto distribution, while friendship indexes follow an exponential distribution. We capture the encounter graph using a small world model, the characteristics of which reach steady state after only one day. We hope for our study to have a great impact on realistic modeling of network usage and mobility patterns in wireless networks.Comment: 16 pages, 31 figure

    Interpretable Machine Learning for Privacy-Preserving Pervasive Systems

    Get PDF
    Our everyday interactions with pervasive systems generate traces that capture various aspects of human behavior and enable machine learning algorithms to extract latent information about users. In this paper, we propose a machine learning interpretability framework that enables users to understand how these generated traces violate their privacy

    Understanding the Detection of View Fraud in Video Content Portals

    Full text link
    While substantial effort has been devoted to understand fraudulent activity in traditional online advertising (search and banner), more recent forms such as video ads have received little attention. The understanding and identification of fraudulent activity (i.e., fake views) in video ads for advertisers, is complicated as they rely exclusively on the detection mechanisms deployed by video hosting portals. In this context, the development of independent tools able to monitor and audit the fidelity of these systems are missing today and needed by both industry and regulators. In this paper we present a first set of tools to serve this purpose. Using our tools, we evaluate the performance of the audit systems of five major online video portals. Our results reveal that YouTube's detection system significantly outperforms all the others. Despite this, a systematic evaluation indicates that it may still be susceptible to simple attacks. Furthermore, we find that YouTube penalizes its videos' public and monetized view counters differently, the former being more aggressive. This means that views identified as fake and discounted from the public view counter are still monetized. We speculate that even though YouTube's policy puts in lots of effort to compensate users after an attack is discovered, this practice places the burden of the risk on the advertisers, who pay to get their ads displayed.Comment: To appear in WWW 2016, Montr\'eal, Qu\'ebec, Canada. Please cite the conference version of this pape
    • …
    corecore