1,126 research outputs found

    Assessing the Value of Transparency in Recommender Systems: An End-User Perspective

    Get PDF
    Recommender systems, especially those built on machine learning, are increasing in popularity, as well as complexity and scope. Systems that cannot explain their reasoning to end-users risk losing trust with users and failing to achieve acceptance. Users demand interfaces that afford them insights into internal workings, allowing them to build appropriate mental models and calibrated trust. Building interfaces that provide this level of transparency, however, is a significant design challenge, with many design features that compete, and little empirical research to guide implementation. We investigated how end-users of recommender systems value different categories of information to help in determining what to do with computer-generated recommendations in contexts involving high risk to themselves or others. Findings will inform future design of decision support in high-criticality contexts

    Understanding the Role of Interactivity and Explanation in Adaptive Experiences

    Get PDF
    Adaptive experiences have been an active area of research in the past few decades, accompanied by advances in technology such as machine learning and artificial intelligence. Whether the currently ongoing research on adaptive experiences has focused on personalization algorithms, explainability, user engagement, or privacy and security, there is growing interest and resources in developing and improving these research focuses. Even though the research on adaptive experiences has been dynamic and rapidly evolving, achieving a high level of user engagement in adaptive experiences remains a challenge. %????? This dissertation aims to uncover ways to engage users in adaptive experiences by incorporating interactivity and explanation through four studies. Study I takes the first step to link the explanation and interactivity in machine learning systems to facilitate users\u27 engagement with the underlying machine learning model with the Tic-Tac-Toe game as a use case. The results show that explainable machine learning (XML) systems (and arguably XAI systems in general) indeed benefit from mechanisms that allow users to interact with the system\u27s internal decision rules. Study II, III, and IV further focus on adaptive experiences in recommender systems in specific, exploring the role of interactivity and explanation to keep the user “in-the-loop” in recommender systems, trying to mitigate the ``filter bubble\u27\u27 problem and help users in self-actualizing by supporting them in exploring and understanding their unique tastes. Study II investigates the effect of recommendation source (a human expert vs. an AI algorithm) and justification method (needs-based vs. interest-based justification) on professional development recommendations in a scenario-based study setting. The results show an interaction effect between these two system aspects: users who are told that the recommendations are based on their interests have a better experience when the recommendations are presented as originating from an AI algorithm, while users who are told that the recommendations are based on their needs have a better experience when the recommendations are presented as originating from a human expert. This work implies that while building the proposed novel movie recommender system covered in study IV, it would provide a better user experience if the movie recommendations are presented as originating from algorithms rather than from a human expert considering that movie preferences (which will be visualized by the movies\u27 emotion feature) are usually based on users\u27 interest. Study III explores the effects of four novel alternative recommendation lists on participants’ perceptions of recommendations and their satisfaction with the system. The four novel alternative recommendation lists (RSSA features) which have the potential to go beyond the traditional top N recommendations provide transparency from a different level --- how much else does the system learn about users beyond the traditional top N recommendations, which in turn enable users to interact with these alternative lists by rating the initial recommendations so as to correct or confirm the system\u27s estimates of the alternative recommendations. The subjective evaluation and behavioral analysis demonstrate that the proposed RSSA features had a significant effect on the user experience, surprisingly, two of the four RSSA features (the controversial and hate features) perform worse than the traditional top-N recommendations on the measured subjective dependent variables while the other two RSSA features (the hipster and no clue items) perform equally well and even slightly better than the traditional top-N (but this effect is not statistically significant). Moreover, the results indicate that individual differences, such as the need for novelty and domain knowledge, play a significant role in users’ perception of and interaction with the system. Study IV further combines diversification, visualization, and interactivity, aiming to encourage users to be more engaged with the system. The results show that introducing emotion as an item feature into recommender systems does help in personalization and individual taste exploration; these benefits are greatly optimized through the mechanisms that diversify recommendations by emotional signature, visualize recommendations on the emotional signature, and allow users to directly interact with the system by tweaking their tastes, which further contributes to both user experience and self-actualization. This work has practical implications for designing adaptive experiences. Explanation solutions in adaptive experiences might not always lead to a positive user experience, it highly depends on the application domain and the context (as studied in all four studies); it is essential to carefully investigate a specific explanation solution in combination with other design elements in different fields. Introducing control by allowing for direct interactivity (vs. indirect interactivity) in adaptive systems and providing feedback to users\u27 input by integrating their input into the algorithms would create a more engaging and interactive user experience (as studied in Study I and IV). And cumulatively, appropriate direct interaction with the system along with deliberate and thoughtful designs of explanation (including visualization design with the application environment fully considered), which are able to arouse user reflection or resonance, would potentially promote both user experience and user self-actualization

    Leveraging Large Language Models in Conversational Recommender Systems

    Full text link
    A Conversational Recommender System (CRS) offers increased transparency and control to users by enabling them to engage with the system through a real-time multi-turn dialogue. Recently, Large Language Models (LLMs) have exhibited an unprecedented ability to converse naturally and incorporate world knowledge and common-sense reasoning into language understanding, unlocking the potential of this paradigm. However, effectively leveraging LLMs within a CRS introduces new technical challenges, including properly understanding and controlling a complex conversation and retrieving from external sources of information. These issues are exacerbated by a large, evolving item corpus and a lack of conversational data for training. In this paper, we provide a roadmap for building an end-to-end large-scale CRS using LLMs. In particular, we propose new implementations for user preference understanding, flexible dialogue management and explainable recommendations as part of an integrated architecture powered by LLMs. For improved personalization, we describe how an LLM can consume interpretable natural language user profiles and use them to modulate session-level context. To overcome conversational data limitations in the absence of an existing production CRS, we propose techniques for building a controllable LLM-based user simulator to generate synthetic conversations. As a proof of concept we introduce RecLLM, a large-scale CRS for YouTube videos built on LaMDA, and demonstrate its fluency and diverse functionality through some illustrative example conversations

    Layered evaluation of interactive adaptive systems : framework and formative methods

    Get PDF
    Peer reviewedPostprin

    Presumptuous aim attribution, conformity, and the ethics of artificial social cognition

    Get PDF
    Imagine you are casually browsing an online bookstore, looking for an interesting novel. Suppose the store predicts you will want to buy a particular novel: the one most chosen by people of your same age, gender, location, and occupational status. The store recommends the book, it appeals to you, and so you choose it. Central to this scenario is an automated prediction of what you desire. This article raises moral concerns about such predictions. More generally, this article examines the ethics of artificial social cognition—the ethical dimensions of attribution of mental states to humans by artificial systems. The focus is presumptuous aim attributions, which are defined here as aim attributions based crucially on the premise that the person in question will have aims like superficially similar people. Several everyday examples demonstrate that this sort of presumptuousness is already a familiar moral concern. The scope of this moral concern is extended by new technologies. In particular, recommender systems based on collaborative filtering are now commonly used to automatically recommend products and information to humans. Examination of these systems demonstrates that they naturally attribute aims presumptuously. This article presents two reservations about the widespread adoption of such systems. First, the severity of our antecedent moral concern about presumptuousness increases when aim attribution processes are automated and accelerated. Second, a foreseeable consequence of reliance on these systems is an unwarranted inducement of interpersonal conformity

    Into the Black Box: Designing for Transparency in Artificial Intelligence

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The rapid infusion of artificial intelligence into everyday technologies means that consumers are likely to interact with intelligent systems that provide suggestions and recommendations on a daily basis in the very near future. While these technologies promise much, current issues in low transparency create high potential to confuse end-users, limiting the market viability of these technologies. While efforts are underway to make machine learning models more transparent, HCI currently lacks an understanding of how these model-generated explanations should best translate into the practicalities of system design. To address this gap, my research took a pragmatic approach to improving system transparency for end-users. Through a series of three studies, I investigated the need and value of transparency to end-users, and explored methods to improve system designs to accomplish greater transparency in intelligent systems offering recommendations. My research resulted in a summarized taxonomy that outlines a variety of motivations for why users ask questions of intelligent systems; useful for considering the type and category of information users might appreciate when interacting with AI-based recommendations. I also developed a categorization of explanation types, known as explanation vectors, that is organized into groups that correspond to user knowledge goals. Explanation vectors provide system designers options for delivering explanations of system processes beyond those of basic explainability. I developed a detailed user typology, which is a four-factor categorization of the predominant attitudes and opinion schemes of everyday users interacting with AI-based recommendations; useful to understand the range of user sentiment towards AI-based recommender features, and possibly useful for tailoring interface design by user type. Lastly, I developed and tested an evaluation method known as the System Transparency Evaluation Method (STEv), which allows for real-world systems and prototypes to be evaluated and improved through a low-cost query method. Results from this dissertation offer concrete direction to interaction designers as to how these results might manifest in the design of interfaces that are more transparent to end users. These studies provide a framework and methodology that is complementary to existing HCI evaluation methods, and lay the groundwork upon which other research into improving system transparency might build

    A robust reputation-based location-privacy recommender system using opportunistic networks

    Get PDF
    Location-sharing services have grown in use commensurately with the increasing popularity of smart phones. As location data can be sensitive, it is important to preserve people’s privacy while using such services, and so location-privacy recommender systems have been proposed to help people configure their privacy settings.These recommenders collect and store people’s data in a centralised system, but these themselves can introduce new privacy threats and concerns.In this paper, we propose a decentralised location-privacy recommender system based on opportunistic networks. We evaluate our system using real-world location-privacy traces, and introduce a reputation scheme based on encounter frequencies to mitigate the potential effects of shilling attacks by malicious users. Experimental results show that, after receiving adequate data, our decentralised recommender system’s performance is close to the performance of traditional centralised recommender systems (3% difference in accuracy and 1% difference in leaks). Meanwhile, our reputation scheme significantly mitigates the effect of malicious users’input (from 55% to 8% success) and makes it increasingly expensive to conduct such attacks.Postprin

    An Evaluation of the Use of Diversity to Improve the Accuracy of Predicted Ratings in Recommender Systems

    Get PDF
    The diversity; versus accuracy trade off, has become an important area of research within recommender systems as online retailers attempt to better serve their customers and gain a competitive advantage through an improved customer experience. This dissertation attempted to evaluate the use of diversity measures in predictive models as a means of improving predicted ratings. Research literature outlines a number of influencing factors such as personality, taste, mood and social networks in addition to approaches to the diversity challenge post recommendation. A number of models were applied included DecisionStump, Linear Regression, J48 Decision Tree and Naive Bayes. Various evaluation metrics such as precision, recall, ROC area, mean squared error and correlation coefficient were used to evaluate the model types. The results were below a benchmark selected during the literature review. The experiment did not demonstrate that diversity measures as inputs improve the accuracy of predicted ratings. However, the evaluation results for the model without diversity measures were low also and comparable to those with diversity indicating that further research in this area may be worthwhile. While the experiment conducted did not clearly demonstrate that the inclusion of diversity measures as inputs improve the accuracy of predicted ratings, approaches to data extraction, pre-processing, and model selection could inform further research. Areas of further research identified within this paper may also add value for those interested in this topic

    A Co-design Study for Multi-Stakeholder Job Recommender System Explanations

    Full text link
    Recent legislation proposals have significantly increased the demand for eXplainable Artificial Intelligence (XAI) in many businesses, especially in so-called `high-risk' domains, such as recruitment. Within recruitment, AI has become commonplace, mainly in the form of job recommender systems (JRSs), which try to match candidates to vacancies, and vice versa. However, common XAI techniques often fall short in this domain due to the different levels and types of expertise of the individuals involved, making explanations difficult to generalize. To determine the explanation preferences of the different stakeholder types - candidates, recruiters, and companies - we created and validated a semi-structured interview guide. Using grounded theory, we structurally analyzed the results of these interviews and found that different stakeholder types indeed have strongly differing explanation preferences. Candidates indicated a preference for brief, textual explanations that allow them to quickly judge potential matches. On the other hand, hiring managers preferred visual graph-based explanations that provide a more technical and comprehensive overview at a glance. Recruiters found more exhaustive textual explanations preferable, as those provided them with more talking points to convince both parties of the match. Based on these findings, we describe guidelines on how to design an explanation interface that fulfills the requirements of all three stakeholder types. Furthermore, we provide the validated interview guide, which can assist future research in determining the explanation preferences of different stakeholder types
    • …
    corecore