57,086 research outputs found

    Understanding Social Characteristic from Spatial Proximity in Mobile Social Network

    Get PDF
    Over the past decades, cities as gathering places of millions of people rapidly evolved in all aspects of population, society, and environments. As one recent trend, location-based social networking applications on mobile devices are becoming increasingly popular. Such mobile devices also become data repositories of massive human activities. Compared with sensing applications in traditional sensor network, Social sensing application in mobile social network, as in which all individuals are regarded as numerous sensors, would result in the fusion of mobile, social and sensor data. In particular, it has been observed that the fusion of these data can be a very powerful tool for series mining purposes. A clear knowledge about the interaction between individual mobility and social networks is essential for improving the existing individual activity model in this paper. We first propose a new measurement called geographic community for clustering spatial proximity in mobile social networks. A novel approach for detecting these geographic communities in mobile social networks has been proposed. Through developing a spatial proximity matrix, an improved symmetric nonnegative matrix factorization method (SNMF) is used to detect geographic communities in mobile social networks. By a real dataset containing thousands of mobile phone users in a provincial capital of China, the correlation between geographic community and common social properties of users have been tested. While exploring shared individual movement patterns, we propose a hybrid approach that utilizes spatial proximity and social proximity of individuals for mining network structure in mobile social networks. Several experimental results have been shown to verify the feasibility of this proposed hybrid approach based on the MIT dataset

    Mapping, sensing and visualising the digital co-presence in the public arena

    Get PDF
    This paper reports on work carried out within the Cityware project using mobile technologies to map, visualise and project the digital co-presence in the city. This paper focuses on two pilot studies exploring the Bluetooth landscape in the city of Bath. Here we apply adapted and ‘digitally augmented’ methods for spatial observation and analysis based on established methods used extensively in the space syntax approach to urban design. We map the physical and digital flows at a macro level and observe static space use at the micro level. In addition we look at social and mobile behaviour from an individual’s point of view. We apply a method based on intervention through ‘Sensing and projecting’ Bluetooth names and digital identity in the public arena. We present early findings in terms of patterns of Bluetooth flow and presence, and outline initial observations about how people’s reaction towards the projection of their Bluetooth names practices in public. In particular we note the importance of constructing socially meaningful relations between people mediated by these technologies. We discuss initial results and outline issues raised in detail before finally describing ongoing work

    Temporal networks of face-to-face human interactions

    Full text link
    The ever increasing adoption of mobile technologies and ubiquitous services allows to sense human behavior at unprecedented levels of details and scale. Wearable sensors are opening up a new window on human mobility and proximity at the finest resolution of face-to-face proximity. As a consequence, empirical data describing social and behavioral networks are acquiring a longitudinal dimension that brings forth new challenges for analysis and modeling. Here we review recent work on the representation and analysis of temporal networks of face-to-face human proximity, based on large-scale datasets collected in the context of the SocioPatterns collaboration. We show that the raw behavioral data can be studied at various levels of coarse-graining, which turn out to be complementary to one another, with each level exposing different features of the underlying system. We briefly review a generative model of temporal contact networks that reproduces some statistical observables. Then, we shift our focus from surface statistical features to dynamical processes on empirical temporal networks. We discuss how simple dynamical processes can be used as probes to expose important features of the interaction patterns, such as burstiness and causal constraints. We show that simulating dynamical processes on empirical temporal networks can unveil differences between datasets that would otherwise look statistically similar. Moreover, we argue that, due to the temporal heterogeneity of human dynamics, in order to investigate the temporal properties of spreading processes it may be necessary to abandon the notion of wall-clock time in favour of an intrinsic notion of time for each individual node, defined in terms of its activity level. We conclude highlighting several open research questions raised by the nature of the data at hand.Comment: Chapter of the book "Temporal Networks", Springer, 2013. Series: Understanding Complex Systems. Holme, Petter; Saram\"aki, Jari (Eds.

    The anatomy of urban social networks and its implications in the searchability problem

    Get PDF
    The appearance of large geolocated communication datasets has recently increased our understanding of how social networks relate to their physical space. However, many recurrently reported properties, such as the spatial clustering of network communities, have not yet been systematically tested at different scales. In this work we analyze the social network structure of over 25 million phone users from three countries at three different scales: country, provinces and cities. We consistently find that this last urban scenario presents significant differences to common knowledge about social networks. First, the emergence of a giant component in the network seems to be controlled by whether or not the network spans over the entire urban border, almost independently of the population or geographic extension of the city. Second, urban communities are much less geographically clustered than expected. These two findings shed new light on the widely-studied searchability in self-organized networks. By exhaustive simulation of decentralized search strategies we conclude that urban networks are searchable not through geographical proximity as their country-wide counterparts, but through an homophily-driven community structure

    A survey on Human Mobility and its applications

    Full text link
    Human Mobility has attracted attentions from different fields of studies such as epidemic modeling, traffic engineering, traffic prediction and urban planning. In this survey we review major characteristics of human mobility studies including from trajectory-based studies to studies using graph and network theory. In trajectory-based studies statistical measures such as jump length distribution and radius of gyration are analyzed in order to investigate how people move in their daily life, and if it is possible to model this individual movements and make prediction based on them. Using graph in mobility studies, helps to investigate the dynamic behavior of the system, such as diffusion and flow in the network and makes it easier to estimate how much one part of the network influences another by using metrics like centrality measures. We aim to study population flow in transportation networks using mobility data to derive models and patterns, and to develop new applications in predicting phenomena such as congestion. Human Mobility studies with the new generation of mobility data provided by cellular phone networks, arise new challenges such as data storing, data representation, data analysis and computation complexity. A comparative review of different data types used in current tools and applications of Human Mobility studies leads us to new approaches for dealing with mentioned challenges

    Inferring Person-to-person Proximity Using WiFi Signals

    Get PDF
    Today's societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. However, while mobility is an important aspect of human behavior, understanding complex social systems requires studying not only the movement of individuals, but also their interactions. Sensing social interactions on a large scale is a technical challenge and many commonly used approaches---including RFID badges or Bluetooth scanning---offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth interactions collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals in social sensing as well as potential threats to privacy that they imply
    • 

    corecore