199,309 research outputs found

    Representation theory in chiral conformal field theory: from fields to observables

    Full text link
    This article develops new techniques for understanding the relationship between the three different mathematical formulations of two-dimensional chiral conformal field theory: conformal nets (axiomatizing local observables), vertex operator algebras (axiomatizing fields), and Segal CFTs. It builds upon previous work which introduced a geometric interpolation procedure for constructing conformal nets from VOAs via Segal CFT, simultaneously relating all three frameworks. In this article, we extend this construction to study the relationship between the representation theory of conformal nets and the representation theory of vertex operator algebras. We define a correspondence between representations in the two contexts, and show how to construct representations of conformal nets from VOAs. We also show that this correspondence is rich enough to relate the respective 'fusion product' theories for conformal nets and VOAs, by constructing local intertwiners (in the sense of conformal nets) from intertwining operators (in the sense of VOAs). We use these techniques to show that all WZW conformal nets can be constructed using our geometric interpolation procedure.Comment: 79 pages. v2: minor revisions and update

    Multiplicative-Additive Focusing for Parsing as Deduction

    Full text link
    Spurious ambiguity is the phenomenon whereby distinct derivations in grammar may assign the same structural reading, resulting in redundancy in the parse search space and inefficiency in parsing. Understanding the problem depends on identifying the essential mathematical structure of derivations. This is trivial in the case of context free grammar, where the parse structures are ordered trees; in the case of categorial grammar, the parse structures are proof nets. However, with respect to multiplicatives intrinsic proof nets have not yet been given for displacement calculus, and proof nets for additives, which have applications to polymorphism, are involved. Here we approach multiplicative-additive spurious ambiguity by means of the proof-theoretic technique of focalisation.Comment: In Proceedings WoF'15, arXiv:1511.0252

    Canonical Proof nets for Classical Logic

    Full text link
    Proof nets provide abstract counterparts to sequent proofs modulo rule permutations; the idea being that if two proofs have the same underlying proof-net, they are in essence the same proof. Providing a convincing proof-net counterpart to proofs in the classical sequent calculus is thus an important step in understanding classical sequent calculus proofs. By convincing, we mean that (a) there should be a canonical function from sequent proofs to proof nets, (b) it should be possible to check the correctness of a net in polynomial time, (c) every correct net should be obtainable from a sequent calculus proof, and (d) there should be a cut-elimination procedure which preserves correctness. Previous attempts to give proof-net-like objects for propositional classical logic have failed at least one of the above conditions. In [23], the author presented a calculus of proof nets (expansion nets) satisfying (a) and (b); the paper defined a sequent calculus corresponding to expansion nets but gave no explicit demonstration of (c). That sequent calculus, called LK\ast in this paper, is a novel one-sided sequent calculus with both additively and multiplicatively formulated disjunction rules. In this paper (a self-contained extended version of [23]), we give a full proof of (c) for expansion nets with respect to LK\ast, and in addition give a cut-elimination procedure internal to expansion nets - this makes expansion nets the first notion of proof-net for classical logic satisfying all four criteria.Comment: Accepted for publication in APAL (Special issue, Classical Logic and Computation

    Characterizing Behavioural Congruences for Petri Nets

    No full text
    We exploit a notion of interface for Petri nets in order to design a set of net combinators. For such a calculus of nets, we focus on the behavioural congruences arising from four simple notions of behaviour, viz., traces, maximal traces, step, and maximal step traces, and from the corresponding four notions of bisimulation, viz., weak and weak step bisimulation and their maximal versions. We characterize such congruences via universal contexts and via games, providing in such a way an understanding of their discerning powers
    corecore