232 research outputs found

    Using Keystroke Dynamics and Location Verification Method for Mobile Banking Authentication.

    Get PDF
    With the rise of security attacks on mobile phones, traditional methods to authentication such as Personal Identification Numbers (PIN) and Passwords are becoming ineffective due to their limitations such as being easily forgettable, discloser, lost or stolen. Keystroke dynamics is a form of behavioral biometric based authentication where an analysis of how users type is monitored and used in authenticating users into a system. The use of location data provides a verification mechanism based on user’s location which can be obtained via their phones Global Positioning System (GPS) facility. This study evaluated existing authentication methods and their performance summarized. To address the limitations of traditional authentication methods this paper proposed an alternative authentication method that uses Keystroke dynamics and location data. To evaluate the proposed authentication method experiments were done through use of a prototype android mobile banking application that captured the typing behavior while logging in and location data from 60 users. The experiment results were lower compared to the previous studies provided in this paper with a False Rejection Rate (FRR) of 5.33% which is the percentage of access attempts by legitimate users that have been rejected by the system and a False Acceptance Rate (FAR) of 3.33% which is the percentage of access attempts by imposters that have been accepted by the system incorrectly, giving an Equal Error Rate (EER) of 4.3%.The outcome of this study demonstrated keystroke dynamics and location verification on PINs as an alternative authentication of mobile banking transactions building on current smartphones features with less implementation costs with no additional hardware compared to other biometric methods. Keywords: smartphones, biometric, mobile banking, keystroke dynamics, location verification, securit

    A survey on touch dynamics authentication in mobile devices

    Get PDF
    © 2016 Elsevier Ltd. All rights reserved. There have been research activities in the area of keystroke dynamics biometrics on physical keyboards (desktop computers or conventional mobile phones) undertaken in the past three decades. However, in terms of touch dynamics biometrics on virtual keyboards (modern touchscreen mobile devices), there has been little published work. Particularly, there is a lack of an extensive survey and evaluation of the methodologies adopted in the area. Owing to the widespread use of touchscreen mobile devices, it is necessary for us to examine the techniques and their effectiveness in the domain of touch dynamics biometrics. The aim of this paper is to provide some insights and comparative analysis of the current state of the art in the topic area, including data acquisition protocols, feature data representations, decision making techniques, as well as experimental settings and evaluations. With such a survey, we can gain a better understanding of the current state of the art, thus identifying challenging issues and knowledge gaps for further research

    Behavioral biometric based personal authentication in feature phones

    Get PDF
    The usage of mobile phones has increased multifold in the recent decades mostly because of its utility in most of the aspects of daily life, such as communications, entertainment, and financial transactions. Feature phones are generally the keyboard based or lower version of touch based mobile phones, mostly targeted for efficient calling and messaging. In comparison to smart phones, feature phones have no provision of a biometrics system for the user access. The literature, have shown very less attempts in designing a biometrics system which could be most suitable to the low-cost feature phones. A biometric system utilizes the features and attributes based on the physiological or behavioral properties of the individual. In this research, we explore the usefulness of keystroke dynamics for feature phones which offers an efficient and versatile biometric framework. In our research, we have suggested an approach to incorporate the user’s typing patterns to enhance the security in the feature phone. We have applied k-nearest neighbors (k-NN) with fuzzy logic and achieved the equal error rate (EER) 1.88% to get the better accuracy. The experiments are performed with 25 users on Samsung On7 Pro C3590. On comparison, our proposed technique is competitive with almost all the other techniques available in the literature

    Strengthen user authentication on mobile devices by using user’s touch dynamics pattern

    Get PDF
    Mobile devices, particularly the touch screen mobile devices, are increasingly used to store and access private and sensitive data or services, and this has led to an increased demand for more secure and usable security services, one of which is user authentication. Currently, mobile device authentication services mainly use a knowledge-based method, e.g. a PIN-based authentication method, and, in some cases, a fingerprint-based authentication method is also supported. The knowledge-based method is vulnerable to impersonation attacks, while the fingerprint-based method can be unreliable sometimes. To overcome these limitations and to make the authentication service more secure and reliable for touch screen mobile device users, we have investigated the use of touch dynamics biometrics as a mobile device authentication solution by designing, implementing and evaluating a touch dynamics authentication method. This paper describes the design, implementation, and evaluation of this method, the acquisition of raw touch dynamics data, the use of the raw data to obtain touch dynamics features, and the training of the features to build an authentication model for user identity verification. The evaluation results show that by integrating the touch dynamics authentication method into the PIN-based authentication method, the protection levels against impersonation attacks is greatly enhanced. For example, if a PIN is compromised, the success rate of an impersonation attempt is drastically reduced from 100% (if only a 4-digit PIN is used) to 9.9% (if both the PIN and the touch dynamics are used). © 2019, The Author(s)
    • …
    corecore