8,493 research outputs found

    Quire: Lightweight Provenance for Smart Phone Operating Systems

    Full text link
    Smartphone apps often run with full privileges to access the network and sensitive local resources, making it difficult for remote systems to have any trust in the provenance of network connections they receive. Even within the phone, different apps with different privileges can communicate with one another, allowing one app to trick another into improperly exercising its privileges (a Confused Deputy attack). In Quire, we engineered two new security mechanisms into Android to address these issues. First, we track the call chain of IPCs, allowing an app the choice of operating with the diminished privileges of its callers or to act explicitly on its own behalf. Second, a lightweight signature scheme allows any app to create a signed statement that can be verified anywhere inside the phone. Both of these mechanisms are reflected in network RPCs, allowing remote systems visibility into the state of the phone when an RPC is made. We demonstrate the usefulness of Quire with two example applications. We built an advertising service, running distinctly from the app which wants to display ads, which can validate clicks passed to it from its host. We also built a payment service, allowing an app to issue a request which the payment service validates with the user. An app cannot not forge a payment request by directly connecting to the remote server, nor can the local payment service tamper with the request

    Simplifying Deep-Learning-Based Model for Code Search

    Full text link
    To accelerate software development, developers frequently search and reuse existing code snippets from a large-scale codebase, e.g., GitHub. Over the years, researchers proposed many information retrieval (IR) based models for code search, which match keywords in query with code text. But they fail to connect the semantic gap between query and code. To conquer this challenge, Gu et al. proposed a deep-learning-based model named DeepCS. It jointly embeds method code and natural language description into a shared vector space, where methods related to a natural language query are retrieved according to their vector similarities. However, DeepCS' working process is complicated and time-consuming. To overcome this issue, we proposed a simplified model CodeMatcher that leverages the IR technique but maintains many features in DeepCS. Generally, CodeMatcher combines query keywords with the original order, performs a fuzzy search on name and body strings of methods, and returned the best-matched methods with the longer sequence of used keywords. We verified its effectiveness on a large-scale codebase with about 41k repositories. Experimental results showed the simplified model CodeMatcher outperforms DeepCS by 97% in terms of MRR (a widely used accuracy measure for code search), and it is over 66 times faster than DeepCS. Besides, comparing with the state-of-the-art IR-based model CodeHow, CodeMatcher also improves the MRR by 73%. We also observed that: fusing the advantages of IR-based and deep-learning-based models is promising because they compensate with each other by nature; improving the quality of method naming helps code search, since method name plays an important role in connecting query and code

    Using High-Rising Cities to Visualize Performance in Real-Time

    Get PDF
    For developers concerned with a performance drop or improvement in their software, a profiler allows a developer to quickly search and identify bottlenecks and leaks that consume much execution time. Non real-time profilers analyze the history of already executed stack traces, while a real-time profiler outputs the results concurrently with the execution of software, so users can know the results instantaneously. However, a real-time profiler risks providing overly large and complex outputs, which is difficult for developers to quickly analyze. In this paper, we visualize the performance data from a real-time profiler. We visualize program execution as a three-dimensional (3D) city, representing the structure of the program as artifacts in a city (i.e., classes and packages expressed as buildings and districts) and their program executions expressed as the fluctuating height of artifacts. Through two case studies and using a prototype of our proposed visualization, we demonstrate how our visualization can easily identify performance issues such as a memory leak and compare performance changes between versions of a program. A demonstration of the interactive features of our prototype is available at https://youtu.be/eleVo19Hp4k.Comment: 10 pages, VISSOFT 2017, Artifact: https://github.com/sefield/high-rising-city-artifac

    Stack Overflow in Github: Any Snippets There?

    Full text link
    When programmers look for how to achieve certain programming tasks, Stack Overflow is a popular destination in search engine results. Over the years, Stack Overflow has accumulated an impressive knowledge base of snippets of code that are amply documented. We are interested in studying how programmers use these snippets of code in their projects. Can we find Stack Overflow snippets in real projects? When snippets are used, is this copy literal or does it suffer adaptations? And are these adaptations specializations required by the idiosyncrasies of the target artifact, or are they motivated by specific requirements of the programmer? The large-scale study presented on this paper analyzes 909k non-fork Python projects hosted on Github, which contain 290M function definitions, and 1.9M Python snippets captured in Stack Overflow. Results are presented as quantitative analysis of block-level code cloning intra and inter Stack Overflow and GitHub, and as an analysis of programming behaviors through the qualitative analysis of our findings.Comment: 14th International Conference on Mining Software Repositories, 11 page

    The Search for the Laws of Automatic Random Testing

    Full text link
    Can one estimate the number of remaining faults in a software system? A credible estimation technique would be immensely useful to project managers as well as customers. It would also be of theoretical interest, as a general law of software engineering. We investigate possible answers in the context of automated random testing, a method that is increasingly accepted as an effective way to discover faults. Our experimental results, derived from best-fit analysis of a variety of mathematical functions, based on a large number of automated tests of library code equipped with automated oracles in the form of contracts, suggest a poly-logarithmic law. Although further confirmation remains necessary on different code bases and testing techniques, we argue that understanding the laws of testing may bring significant benefits for estimating the number of detectable faults and comparing different projects and practices.Comment: 20 page
    • …
    corecore