6,723 research outputs found

    StoryDroid: Automated Generation of Storyboard for Android Apps

    Full text link
    Mobile apps are now ubiquitous. Before developing a new app, the development team usually endeavors painstaking efforts to review many existing apps with similar purposes. The review process is crucial in the sense that it reduces market risks and provides inspiration for app development. However, manual exploration of hundreds of existing apps by different roles (e.g., product manager, UI/UX designer, developer) in a development team can be ineffective. For example, it is difficult to completely explore all the functionalities of the app in a short period of time. Inspired by the conception of storyboard in movie production, we propose a system, StoryDroid, to automatically generate the storyboard for Android apps, and assist different roles to review apps efficiently. Specifically, StoryDroid extracts the activity transition graph and leverages static analysis techniques to render UI pages to visualize the storyboard with the rendered pages. The mapping relations between UI pages and the corresponding implementation code (e.g., layout code, activity code, and method hierarchy) are also provided to users. Our comprehensive experiments unveil that StoryDroid is effective and indeed useful to assist app development. The outputs of StoryDroid enable several potential applications, such as the recommendation of UI design and layout code

    Geometric generalizations of the Tonnetz and their relation to Fourier phase space

    Full text link
    Some recent work on generalized Tonnetze has examined the topologies resulting from Richard Cohn’s common-tone based formulation, while Tymoczko has reformulated the Tonnetz as a network of voice-leading relationships and investigated the resulting geometries. This paper adopts the original common-tone based formulation and takes a geometrical approach, showing that Tonnetze can always be realized in toroidal spaces,and that the resulting spaces always correspond to one of the possible Fourier phase spaces. We can therefore use the DFT to optimize the given Tonnetz to the space (or vice-versa). I interpret two-dimensional Tonnetze as triangulations of the 2-torus into regions associated with the representatives of a single trichord type. The natural generalization to three dimensions is therefore a triangulation of the 3-torus. This means that a three-dimensional Tonnetze is, in the general case, a network of three tetrachord-types related by shared trichordal subsets. Other Tonnetze that have been proposed with bounded or otherwise non-toroidal topologies, including Tymoczko’s voice-leading Tonnetze, can be under-stood as the embedding of the toroidal Tonnetze in other spaces, or as foldings of toroidal Tonnetze with duplicated interval types.Accepted manuscrip

    Thermalization through Hagedorn states - the importance of multiparticle collisions

    Full text link
    Quick chemical equilibration times of hadrons within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme master equations are employed for the chemical equilibration of various hadronic particles like (strange) baryon and antibaryons. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.Comment: 8 pages, 3 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - Oct. 2, 200

    Between Hype and Understatement: Reassessing Cyber Risks as a Security Strategy

    Get PDF
    Most of the actions that fall under the trilogy of cyber crime, terrorism,and war exploit pre-existing weaknesses in the underlying technology.Because these vulnerabilities that exist in the network are not themselvesillegal, they tend to be overlooked in the debate on cyber security. A UKreport on the cost of cyber crime illustrates this approach. Its authors chose to exclude from their analysis the costs in anticipation of cyber crime, such as insurance costs and the costs of purchasing anti-virus software on the basis that "these are likely to be factored into normal day-to-day expenditures for the Government, businesses, and individuals. This article contends if these costs had been quantified and integrated into the cost of cyber crime, then the analysis would have revealed that what matters is not so much cyber crime, but the fertile terrain of vulnerabilities that unleash a range of possibilities to whomever wishes to exploit them. By downplaying the vulnerabilities, the threats represented by cyber war, cyber terrorism, and cyber crime are conversely inflated. Therefore, reassessing risk as a strategy for security in cyberspace must include acknowledgment of understated vulnerabilities, as well as a better distributed knowledge about the nature and character of the overhyped threats of cyber crime, cyber terrorism, and cyber war

    Structural dynamics of troponin I during Ca2+-activation of cardiac thin filaments: a multi-site Förster resonance energy transfer study.

    Get PDF
    A multi-site, steady-state Förster resonance energy transfer (FRET) approach was used to quantify Ca(2+)-induced changes in proximity between donor loci on human cardiac troponin I (cTnI), and acceptor loci on human cardiac tropomyosin (cTm) and F-actin within functional thin filaments. A fluorescent donor probe was introduced to unique and key cysteine residues on the C- and N-termini of cTnI. A FRET acceptor probe was introduced to one of three sites located on the inner or outer domain of F-actin, namely Cys-374 and the phalloidin-binding site on F-actin, and Cys-190 of cTm. Unlike earlier FRET analyses of protein dynamics within the thin filament, this study considered the effects of non-random distribution of dipoles for the donor and acceptor probes. The major conclusion drawn from this study is that Ca(2+) and myosin S1-binding to the thin filament results in movement of the C-terminal domain of cTnI from the outer domain of F-actin towards the inner domain, which is associated with the myosin-binding. A hinge-linkage model is used to best-describe the finding of a Ca(2+)-induced movement of the C-terminus of cTnI with a stationary N-terminus. This dynamic model of the activation of the thin filament is discussed in the context of other structural and biochemical studies on normal and mutant cTnI found in hypertrophic cardiomyopathies

    Hagedorn states and thermalization : XLIX International Winter Meeting on Nuclear Physics, 24 - 28 January 2011, Bormio, Italy

    Get PDF
    In recent years, Hagedorn states have been used to explain the equilibrium and transport properties of a hadron gas close to the QCD critical temperature. These massive resonances are shown to lower h/s to near the AdS/CFT limit close to the phase transition. A comparison of the Hagedorn model to recent lattice results is made and it is found that the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states
    • …
    corecore