15,551 research outputs found

    How much complexity does an RNN architecture need to learn syntax-sensitive dependencies?

    Full text link
    Long short-term memory (LSTM) networks and their variants are capable of encapsulating long-range dependencies, which is evident from their performance on a variety of linguistic tasks. On the other hand, simple recurrent networks (SRNs), which appear more biologically grounded in terms of synaptic connections, have generally been less successful at capturing long-range dependencies as well as the loci of grammatical errors in an unsupervised setting. In this paper, we seek to develop models that bridge the gap between biological plausibility and linguistic competence. We propose a new architecture, the Decay RNN, which incorporates the decaying nature of neuronal activations and models the excitatory and inhibitory connections in a population of neurons. Besides its biological inspiration, our model also shows competitive performance relative to LSTMs on subject-verb agreement, sentence grammaticality, and language modeling tasks. These results provide some pointers towards probing the nature of the inductive biases required for RNN architectures to model linguistic phenomena successfully.Comment: 11 pages, 5 figures (including appendix); to appear at ACL SRW 202

    Dataflow Matrix Machines as a Generalization of Recurrent Neural Networks

    Full text link
    Dataflow matrix machines are a powerful generalization of recurrent neural networks. They work with multiple types of arbitrary linear streams, multiple types of powerful neurons, and allow to incorporate higher-order constructions. We expect them to be useful in machine learning and probabilistic programming, and in the synthesis of dynamic systems and of deterministic and probabilistic programs.Comment: 4 pages position paper (v2 - update references

    Learning Numeracy: Binary Arithmetic with Neural Turing Machines

    Full text link
    One of the main problems encountered so far with recurrent neural networks is that they struggle to retain long-time information dependencies in their recurrent connections. Neural Turing Machines (NTMs) attempt to mitigate this issue by providing the neural network with an external portion of memory, in which information can be stored and manipulated later on. The whole mechanism is differentiable end-to-end, allowing the network to learn how to utilise this long-term memory via stochastic gradient descent. This allows NTMs to infer simple algorithms directly from data sequences. Nonetheless, the model can be hard to train due to a large number of parameters and interacting components and little related work is present. In this work we use NTMs to learn and generalise two arithmetical tasks: binary addition and multiplication. These tasks are two fundamental algorithmic examples in computer science, and are a lot more challenging than the previously explored ones, with which we aim to shed some light on the real capabilities on this neural model

    Few-Shot Generalization Across Dialogue Tasks

    Full text link
    Machine-learning based dialogue managers are able to learn complex behaviors in order to complete a task, but it is not straightforward to extend their capabilities to new domains. We investigate different policies' ability to handle uncooperative user behavior, and how well expertise in completing one task (such as restaurant reservations) can be reapplied when learning a new one (e.g. booking a hotel). We introduce the Recurrent Embedding Dialogue Policy (REDP), which embeds system actions and dialogue states in the same vector space. REDP contains a memory component and attention mechanism based on a modified Neural Turing Machine, and significantly outperforms a baseline LSTM classifier on this task. We also show that both our architecture and baseline solve the bAbI dialogue task, achieving 100% test accuracy

    Fast Transient Simulation of High-Speed Channels Using Recurrent Neural Network

    Full text link
    Generating eye diagrams by using a circuit simulator can be very computationally intensive, especially in the presence of nonlinearities. It often involves multiple Newton-like iterations at every time step when a SPICE-like circuit simulator handles a nonlinear system in the transient regime. In this paper, we leverage machine learning methods, to be specific, the recurrent neural network (RNN), to generate black-box macromodels and achieve significant reduction of computation time. Through the proposed approach, an RNN model is first trained and then validated on a relatively short sequence generated from a circuit simulator. Once the training completes, the RNN can be used to make predictions on the remaining sequence in order to generate an eye diagram. The training cost can also be amortized when the trained RNN starts making predictions. Besides, the proposed approach requires no complex circuit simulations nor substantial domain knowledge. We use two high-speed link examples to demonstrate that the proposed approach provides adequate accuracy while the computation time can be dramatically reduced. In the high-speed link example with a PAM4 driver, the eye diagram generated by RNN models shows good agreement with that obtained from a commercial circuit simulator. This paper also investigates the impacts of various RNN topologies, training schemes, and tunable parameters on both the accuracy and the generalization capability of an RNN model. It is found out that the long short-term memory (LSTM) network outperforms the vanilla RNN in terms of the accuracy in predicting transient waveforms

    Exploring Models and Data for Remote Sensing Image Caption Generation

    Full text link
    Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimalComment: 14 pages, 8 figure

    A Selective Overview of Deep Learning

    Full text link
    Deep learning has arguably achieved tremendous success in recent years. In simple words, deep learning uses the composition of many nonlinear functions to model the complex dependency between input features and labels. While neural networks have a long history, recent advances have greatly improved their performance in computer vision, natural language processing, etc. From the statistical and scientific perspective, it is natural to ask: What is deep learning? What are the new characteristics of deep learning, compared with classical methods? What are the theoretical foundations of deep learning? To answer these questions, we introduce common neural network models (e.g., convolutional neural nets, recurrent neural nets, generative adversarial nets) and training techniques (e.g., stochastic gradient descent, dropout, batch normalization) from a statistical point of view. Along the way, we highlight new characteristics of deep learning (including depth and over-parametrization) and explain their practical and theoretical benefits. We also sample recent results on theories of deep learning, many of which are only suggestive. While a complete understanding of deep learning remains elusive, we hope that our perspectives and discussions serve as a stimulus for new statistical research

    Efficient Probabilistic Inference in Generic Neural Networks Trained with Non-Probabilistic Feedback

    Full text link
    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sub-linearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Comment: 30 pages, 10 figures, 6 supplementary figure

    Equilibrated Recurrent Neural Network: Neuronal Time-Delayed Self-Feedback Improves Accuracy and Stability

    Full text link
    We propose a novel {\it Equilibrated Recurrent Neural Network} (ERNN) to combat the issues of inaccuracy and instability in conventional RNNs. Drawing upon the concept of autapse in neuroscience, we propose augmenting an RNN with a time-delayed self-feedback loop. Our sole purpose is to modify the dynamics of each internal RNN state and, at any time, enforce it to evolve close to the equilibrium point associated with the input signal at that time. We show that such self-feedback helps stabilize the hidden state transitions leading to fast convergence during training while efficiently learning discriminative latent features that result in state-of-the-art results on several benchmark datasets at test-time. We propose a novel inexact Newton method to solve fixed-point conditions given model parameters for generating the latent features at each hidden state. We prove that our inexact Newton method converges locally with linear rate (under mild conditions). We leverage this result for efficient training of ERNNs based on backpropagation

    Compositional generalization in a deep seq2seq model by separating syntax and semantics

    Full text link
    Standard methods in deep learning for natural language processing fail to capture the compositional structure of human language that allows for systematic generalization outside of the training distribution. However, human learners readily generalize in this way, e.g. by applying known grammatical rules to novel words. Inspired by work in neuroscience suggesting separate brain systems for syntactic and semantic processing, we implement a modification to standard approaches in neural machine translation, imposing an analogous separation. The novel model, which we call Syntactic Attention, substantially outperforms standard methods in deep learning on the SCAN dataset, a compositional generalization task, without any hand-engineered features or additional supervision. Our work suggests that separating syntactic from semantic learning may be a useful heuristic for capturing compositional structure.Comment: 18 pages, 15 figures, preprint version of submission to NeurIPS 2019, under revie
    • …
    corecore