1,395 research outputs found

    Sparse Partially Collapsed MCMC for Parallel Inference in Topic Models

    Full text link
    Topic models, and more specifically the class of Latent Dirichlet Allocation (LDA), are widely used for probabilistic modeling of text. MCMC sampling from the posterior distribution is typically performed using a collapsed Gibbs sampler. We propose a parallel sparse partially collapsed Gibbs sampler and compare its speed and efficiency to state-of-the-art samplers for topic models on five well-known text corpora of differing sizes and properties. In particular, we propose and compare two different strategies for sampling the parameter block with latent topic indicators. The experiments show that the increase in statistical inefficiency from only partial collapsing is smaller than commonly assumed, and can be more than compensated by the speedup from parallelization and sparsity on larger corpora. We also prove that the partially collapsed samplers scale well with the size of the corpus. The proposed algorithm is fast, efficient, exact, and can be used in more modeling situations than the ordinary collapsed sampler.Comment: Accepted for publication in Journal of Computational and Graphical Statistic

    Particle Learning for General Mixtures

    Get PDF
    This paper develops particle learning (PL) methods for the estimation of general mixture models. The approach is distinguished from alternative particle filtering methods in two major ways. First, each iteration begins by resampling particles according to posterior predictive probability, leading to a more efficient set for propagation. Second, each particle tracks only the "essential state vector" thus leading to reduced dimensional inference. In addition, we describe how the approach will apply to more general mixture models of current interest in the literature; it is hoped that this will inspire a greater number of researchers to adopt sequential Monte Carlo methods for fitting their sophisticated mixture based models. Finally, we show that PL leads to straight forward tools for marginal likelihood calculation and posterior cluster allocation.Business Administratio
    • …
    corecore