1,462 research outputs found

    Polyflow: a Polystore-compliant mechanism to provide interoperability to heterogeneous provenance graphs

    Get PDF
    Many scientific experiments are modeled as workflows. Workflows usually output massive amounts of data. To guarantee the reproducibility of workflows, they are usually orchestrated by Workflow Management Systems (WfMS), that capture provenance data. Provenance represents the lineage of a data fragment throughout its transformations by activities in a workflow. Provenance traces are usually represented as graphs. These graphs allows scientists to analyze and evaluate results produced by a workflow. However, each WfMS has a proprietary format for provenance and do it in different granularity levels. Therefore, in more complex scenarios in which the scientist needs to interpret provenance graphs generated by multiple WfMSs and workflows, a challenge arises. To first understand the research landscape, we conduct a Systematic Literature Mapping, assessing existing solutions under several different lenses. With a clearer understanding of the state of the art, we propose a tool called Polyflow, which is based on the concept of Polystore systems, integrating several databases of heterogeneous origin by adopting a global ProvONE schema. Polyflow allows scientists to query multiple provenance graphs in an integrated way. Polyflow was evaluated by experts using provenance data collected from real experiments that generate phylogenetic trees through workflows. The experiment results suggest that Polyflow is a viable solution for interoperating heterogeneous provenance data generated by different WfMSs, from both a usability and performance standpoint.Muitos experimentos científicos são modelados como workflows (fluxos de trabalho). Workflows produzem comumente um grande volume de dados. De forma a garantir a reprodutibilidade desses workflows, estes geralmente são orquestrados por Sistemas de Gerência de Workflows (SGWfs), garantindo que dados de proveniência sejam capturados. Dados de proveniência representam o histórico de derivação de um dado ao longo da execução do workflow. Assim, o histórico de derivação dos dados pode ser representado por meio de um grafo de proveniência. Este grafo possibilita aos cientistas analisarem e avaliarem resultados produzidos por um workflow. Todavia, cada SGWf tem seu formato proprietário de representação para dados de proveniência, e os armazenam em diferentes granularidades. Consequentemente, em cenários mais complexos em que um cientista precisa analisar de forma integrada grafos de proveniência gerados por múltiplos workflows, isso se torna desafiador. Primeiramente, para entender o campo de pesquisa, realizamos um Mapeamento Sistemático da Literatura, avaliando soluções existentes sob diferentes lentes. Com uma compreensão mais clara do atual estado da arte, propomos uma ferramenta chamada Polyflow, inspirada em conceitos de sistemas Polystore, possibilitando a integração de várias bases de dados heterogêneas por meio de uma interface de consulta única que utiliza o ProvONE como schema global. Polyflow permite que cientistas submetam consultas em múltiplos grafos de proveniência de maneira integrada. Polyflow foi avaliado em conjunto com especialistas usando dados de proveniência coletados de workflows reais que apoiam o estudo de geração de árvores filogenéticas. O resultado da avaliação mostrou a viabilidade do Polyflow para interoperar semanticamente dados de proveniência gerado por distintos SGWfs, tanto do ponto de vista de desempenho quanto de usabilidade

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    SIMDAT

    No full text

    A provenance-based semantic approach to support understandability, reproducibility, and reuse of scientific experiments

    Get PDF
    Understandability and reproducibility of scientific results are vital in every field of science. Several reproducibility measures are being taken to make the data used in the publications findable and accessible. However, there are many challenges faced by scientists from the beginning of an experiment to the end in particular for data management. The explosive growth of heterogeneous research data and understanding how this data has been derived is one of the research problems faced in this context. Interlinking the data, the steps and the results from the computational and non-computational processes of a scientific experiment is important for the reproducibility. We introduce the notion of end-to-end provenance management'' of scientific experiments to help scientists understand and reproduce the experimental results. The main contributions of this thesis are: (1) We propose a provenance modelREPRODUCE-ME'' to describe the scientific experiments using semantic web technologies by extending existing standards. (2) We study computational reproducibility and important aspects required to achieve it. (3) Taking into account the REPRODUCE-ME provenance model and the study on computational reproducibility, we introduce our tool, ProvBook, which is designed and developed to demonstrate computational reproducibility. It provides features to capture and store provenance of Jupyter notebooks and helps scientists to compare and track their results of different executions. (4) We provide a framework, CAESAR (CollAborative Environment for Scientific Analysis with Reproducibility) for the end-to-end provenance management. This collaborative framework allows scientists to capture, manage, query and visualize the complete path of a scientific experiment consisting of computational and non-computational steps in an interoperable way. We apply our contributions to a set of scientific experiments in microscopy research projects

    Rice Galaxy: An open resource for plant science

    Get PDF
    Background: Rice molecular genetics, breeding, genetic diversity, and allied research (such as rice-pathogen interaction) have adopted sequencing technologies and high-density genotyping platforms for genome variation analysis and gene discovery. Germplasm collections representing rice diversity, improved varieties, and elite breeding materials are accessible through rice gene banks for use in research and breeding, with many having genome sequences and high-density genotype data available. Combining phenotypic and genotypic information on these accessions enables genome-wide association analysis, which is driving quantitative trait loci discovery and molecular marker development. Comparative sequence analyses across quantitative trait loci regions facilitate the discovery of novel alleles. Analyses involving DNA sequences and large genotyping matrices for thousands of samples, however, pose a challenge to non−computer savvy rice researchers. Findings: The Rice Galaxy resource has shared datasets that include high-density genotypes from the 3,000 Rice Genomes project and sequences with corresponding annotations from 9 published rice genomes. The Rice Galaxy web server and deployment installer includes tools for designing single-nucleotide polymorphism assays, analyzing genome-wide association studies, population diversity, rice−bacterial pathogen diagnostics, and a suite of published genomic prediction methods. A prototype Rice Galaxy compliant to Open Access, Open Data, and Findable, Accessible, Interoperable, and Reproducible principles is also presented. Conclusions: Rice Galaxy is a freely available resource that empowers the plant research community to perform state-of-the-art analyses and utilize publicly available big datasets for both fundamental and applied science

    The Research Object Suite of Ontologies: Sharing and Exchanging Research Data and Methods on the Open Web

    Get PDF
    Research in life sciences is increasingly being conducted in a digital and online environment. In particular, life scientists have been pioneers in embracing new computational tools to conduct their investigations. To support the sharing of digital objects produced during such research investigations, we have witnessed in the last few years the emergence of specialized repositories, e.g., DataVerse and FigShare. Such repositories provide users with the means to share and publish datasets that were used or generated in research investigations. While these repositories have proven their usefulness, interpreting and reusing evidence for most research results is a challenging task. Additional contextual descriptions are needed to understand how those results were generated and/or the circumstances under which they were concluded. Because of this, scientists are calling for models that go beyond the publication of datasets to systematically capture the life cycle of scientific investigations and provide a single entry point to access the information about the hypothesis investigated, the datasets used, the experiments carried out, the results of the experiments, the people involved in the research, etc. In this paper we present the Research Object (RO) suite of ontologies, which provide a structured container to encapsulate research data and methods along with essential metadata descriptions. Research Objects are portable units that enable the sharing, preservation, interpretation and reuse of research investigation results. The ontologies we present have been designed in the light of requirements that we gathered from life scientists. They have been built upon existing popular vocabularies to facilitate interoperability. Furthermore, we have developed tools to support the creation and sharing of Research Objects, thereby promoting and facilitating their adoption.Comment: 20 page
    corecore