33,592 research outputs found

    Understanding Android security

    Get PDF
    This paper details a survey of Android users in an attempt to shed light on how users perceive the risks associated with app permissions and in- built adware. A series of questions was presented in a Web survey, with results suggesting interesting differences between males and females in installation be- haviour and attitudes toward security

    Understanding and Improving Security of the Android Operating System

    Get PDF
    Successful realization of practical computer security improvements requires an understanding and insight into the system\u27s security architecture, combined with a consideration of end-users\u27 needs as well as the system\u27s design tenets. In the case of Android, a system with an open, modular architecture that emphasizes usability and performance, acquiring this knowledge and insight can be particularly challenging for several reasons. In spite of Android\u27s open source philosophy, the system is extremely large and complex, documentation and reference materials are scarce, and the code base is rapidly evolving with new features and fixes. To make matters worse, the vast majority of Android devices in use do not run the open source code, but rather proprietary versions that have been heavily customized by vendors for product differentiation. Proposing security improvements or making customizations without sufficient insight into the system typically leads to less-practical, less-efficient, or even vulnerable results. Point solutions to specific problems risk leaving other similar problems in the distributed security architecture unsolved. Far-reaching general-purpose approaches may further complicate an already complex system, and force end-users to endure significant performance and usability degradations regardless of their specific security and privacy needs. In the case of vendor customization, uninformed changes can introduce access control inconsistencies and new vulnerabilities. Hence, the lack of methodologies and resources available for gaining insight about Android security is hindering the development of practical security solutions, sound vendor customizations, and end-user awareness of the proprietary devices they are using. Addressing this deficiency is the subject of this dissertation. New approaches for analyzing, evaluating and understanding Android access controls are introduced and used to create an interactive database for use by security researchers as well as system designers and end-user product evaluators. Case studies using the new techniques are described, with results uncovering problems in Android\u27s multiuser framework and vendor-customized System Services. Finally, the new insights are used to develop and implement a novel virtualization-based security architecture that protects sensitive resources while preserving Android\u27s open architecture and expected levels of performance and usability

    Gamification techniques for raising cyber security awareness

    Get PDF
    Due to the prevalence of online services in modern society, such as internet banking and social media, it is important for users to have an understanding of basic security measures in order to keep themselves safe online. However, users often do not know how to make their online interactions secure, which demonstrates an educational need in this area. Gamification has grown in popularity in recent years and has been used to teach people about a range of subjects. This paper presents an exploratory study investigating the use of gamification techniques to educate average users about password security, with the aim of raising overall security awareness. To explore the impact of such techniques, a role-playing quiz application (RPG) was developed for the Android platform to educate users about password security. Results gained from the work highlightedthat users enjoyed learning via the use of the password application, and felt they benefitted from the inclusion of gamification techniques. Future work seeks to expand the prototype into a full solution, covering a range of security awareness issues

    Towards Baselines for Shoulder Surfing on Mobile Authentication

    Full text link
    Given the nature of mobile devices and unlock procedures, unlock authentication is a prime target for credential leaking via shoulder surfing, a form of an observation attack. While the research community has investigated solutions to minimize or prevent the threat of shoulder surfing, our understanding of how the attack performs on current systems is less well studied. In this paper, we describe a large online experiment (n=1173) that works towards establishing a baseline of shoulder surfing vulnerability for current unlock authentication systems. Using controlled video recordings of a victim entering in a set of 4- and 6-length PINs and Android unlock patterns on different phones from different angles, we asked participants to act as attackers, trying to determine the authentication input based on the observation. We find that 6-digit PINs are the most elusive attacking surface where a single observation leads to just 10.8% successful attacks, improving to 26.5\% with multiple observations. As a comparison, 6-length Android patterns, with one observation, suffered 64.2% attack rate and 79.9% with multiple observations. Removing feedback lines for patterns improves security from 35.3\% and 52.1\% for single and multiple observations, respectively. This evidence, as well as other results related to hand position, phone size, and observation angle, suggests the best and worst case scenarios related to shoulder surfing vulnerability which can both help inform users to improve their security choices, as well as establish baselines for researchers.Comment: Will appear in Annual Computer Security Applications Conference (ACSAC

    Understanding Android VoIP security: A system-level vulnerability assessment

    Get PDF

    After Over-Privileged Permissions: Using Technology and Design to Create Legal Compliance

    Get PDF
    Consumers in the mobile ecosystem can putatively protect their privacy with the use of application permissions. However, this requires the mobile device owners to understand permissions and their privacy implications. Yet, few consumers appreciate the nature of permissions within the mobile ecosystem, often failing to appreciate the privacy permissions that are altered when updating an app. Even more concerning is the lack of understanding of the wide use of third-party libraries, most which are installed with automatic permissions, that is permissions that must be granted to allow the application to function appropriately. Unsurprisingly, many of these third-party permissions violate consumers’ privacy expectations and thereby, become “over-privileged” to the user. Consequently, an obscurity of privacy expectations between what is practiced by the private sector and what is deemed appropriate by the public sector is exhibited. Despite the growing attention given to privacy in the mobile ecosystem, legal literature has largely ignored the implications of mobile permissions. This article seeks to address this omission by analyzing the impacts of mobile permissions and the privacy harms experienced by consumers of mobile applications. The authors call for the review of industry self-regulation and the overreliance upon simple notice and consent. Instead, the authors set out a plan for greater attention to be paid to socio-technical solutions, focusing on better privacy protections and technology embedded within the automatic permission-based application ecosystem
    • …
    corecore