83 research outputs found

    Bootstrapping Multilingual Intent Models via Machine Translation for Dialog Automation

    Get PDF
    With the resurgence of chat-based dialog systems in consumer and enterprise applications, there has been much success in developing data-driven and rule-based natural language models to understand human intent. Since these models require large amounts of data and in-domain knowledge, expanding an equivalent service into new markets is disrupted by language barriers that inhibit dialog automation. This paper presents a user study to evaluate the utility of out-of-the-box machine translation technology to (1) rapidly bootstrap multilingual spoken dialog systems and (2) enable existing human analysts to understand foreign language utterances. We additionally evaluate the utility of machine translation in human assisted environments, where a portion of the traffic is processed by analysts. In English->Spanish experiments, we observe a high potential for dialog automation, as well as the potential for human analysts to process foreign language utterances with high accuracy.Comment: 6 pages, 3 figures, accepted for publication at the 2018 European Association for Machine Translation Conference (EAMT 2018

    Towards an Intelligent Tutor for Mathematical Proofs

    Get PDF
    Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualized instruction. In this paper, we discuss a novel approach to developing an intelligent tutoring system for teaching textbook-style mathematical proofs. We characterize the particularities of the domain and discuss common ITS design models. Our approach is motivated by phenomena found in a corpus of tutorial dialogs that were collected in a Wizard-of-Oz experiment. We show how an intelligent tutor for textbook-style mathematical proofs can be built on top of an adapted assertion-level proof assistant by reusing representations and proof search strategies originally developed for automated and interactive theorem proving. The resulting prototype was successfully evaluated on a corpus of tutorial dialogs and yields good results.Comment: In Proceedings THedu'11, arXiv:1202.453

    Bootstrapping Multilingual Intent Models via Machine Translation for Dialog Automation

    Get PDF
    With the resurgence of chat-based dialog systems in consumer and enterprise applications, there has been much success in developing data-driven and rule-based natural language models to understand human intent. Since these models require large amounts of data and in-domain knowledge, expanding an equivalent service into new markets is disrupted by language barriers that inhibit dialog automation. This paper presents a user study to evaluate the utility of out-of-the-box machine translation technology to (1) rapidly bootstrap multilingual spoken dialog systems and (2) enable existing human analysts to understand foreign language utterances. We additionally evaluate the utility of machine translation in human assisted environments, where a portion of the traffic is processed by analysts. In English-Spanish experiments, we observe a high potential for dialog automation, as well as the potential for human analysts to process foreign language utterances with high accuracy

    Understanding the cognitive aspects of human error will increase the usability of user interfaces.

    Get PDF
    Understanding the cognitive aspects of human error will increase the usability of user interfaces. It is important to study the cognitive aspects of human error because many disasters have been attributed to operator errors. Creating usable interfaces that reduce the likelihood of error will save industries a great deal of money and may even save human lives. A greater understanding of human errors can be obtained by examining the psychological basis of errors, the methods used to study errors, some of the problems associated with studying errors and different types of errors. Next, the current research findings can then be applied to user interfaces to reduce the probability of user errors. Then, a web survey system, phpESP, will be analyzed based on the guidelines for reducing human error in user interfaces. The analysis of the survey system can server as a guide to help designers reduce potential user errors

    Theoretical foundations for illocutionary structure parsing

    Get PDF
    Illocutionary structure in real language use is intricate and complex, and nowhere more so than in argument and debate. Identifying this structure without any theoretical scaffolding is extremely challenging even for humans. New work in Inference Anchoring Theory has provided significant advances in such scaffolding which are helping to allow the analytical challenges of argumentation structure to be tackled. This paper demonstrates how these advances can also pave the way to automated and semi-automated research in understanding the structure of natural debate. This paper is the extended version of the paper presented at the 11th International Conference on Computational Models of Natural Argument (CMNA 2013), 14 June 2013, Rome, Italy. It reports on the initial steps of a project on argument mining from dialogue. Note that since then the corpus size and the annotation scheme have evolved, however, the method presented here is still valid and the project has developed accordingly

    Context-Independent Task Knowledge for Neurosymbolic Reasoning in Cognitive Robotics

    Get PDF
    One of the current main goals of artificial intelligence and robotics research is the creation of an artificial assistant which can have flexible, human like behavior, in order to accomplish everyday tasks. A lot of what is context-independent task knowledge to the human is what enables this flexibility at multiple levels of cognition. In this scope the author analyzes how to acquire, represent and disambiguate symbolic knowledge representing context-independent task knowledge, abstracted from multiple instances: this thesis elaborates the incurred problems, implementation constraints, current state-of-the-art practices and ultimately the solutions newly introduced in this scope. The author specifically discusses acquisition of context-independent task knowledge from large amounts of human-written texts and their reusability in the robotics domain; the acquisition of knowledge on human musculoskeletal dependencies constraining motion which allows a better higher level representation of observed trajectories; the means of verbalization of partial contextual and instruction knowledge, increasing interaction possibilities with the human as well as contextual adaptation. All the aforementioned points are supported by evaluation in heterogeneous setups, to bring a view on how to make optimal use of statistical & symbolic applications (i.e. neurosymbolic reasoning) in cognitive robotics. This work has been performed to enable context-adaptable artificial assistants, by bringing together knowledge on what is usually regarded as context-independent task knowledge

    Students´ language in computer-assisted tutoring of mathematical proofs

    Get PDF
    Truth and proof are central to mathematics. Proving (or disproving) seemingly simple statements often turns out to be one of the hardest mathematical tasks. Yet, doing proofs is rarely taught in the classroom. Studies on cognitive difficulties in learning to do proofs have shown that pupils and students not only often do not understand or cannot apply basic formal reasoning techniques and do not know how to use formal mathematical language, but, at a far more fundamental level, they also do not understand what it means to prove a statement or even do not see the purpose of proof at all. Since insight into the importance of proof and doing proofs as such cannot be learnt other than by practice, learning support through individualised tutoring is in demand. This volume presents a part of an interdisciplinary project, set at the intersection of pedagogical science, artificial intelligence, and (computational) linguistics, which investigated issues involved in provisioning computer-based tutoring of mathematical proofs through dialogue in natural language. The ultimate goal in this context, addressing the above-mentioned need for learning support, is to build intelligent automated tutoring systems for mathematical proofs. The research presented here has been focused on the language that students use while interacting with such a system: its linguistic propeties and computational modelling. Contribution is made at three levels: first, an analysis of language phenomena found in students´ input to a (simulated) proof tutoring system is conducted and the variety of students´ verbalisations is quantitatively assessed, second, a general computational processing strategy for informal mathematical language and methods of modelling prominent language phenomena are proposed, and third, the prospects for natural language as an input modality for proof tutoring systems is evaluated based on collected corpora
    corecore