14 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Overcomplete Dictionary and Deep Learning Approaches to Image and Video Analysis

    Get PDF
    Extracting useful information while ignoring others (e.g. noise, occlusion, lighting) is an essential and challenging data analyzing step for many computer vision tasks such as facial recognition, scene reconstruction, event detection, image restoration, etc. Data analyzing of those tasks can be formulated as a form of matrix decomposition or factorization to separate useful and/or fill in missing information based on sparsity and/or low-rankness of the data. There has been an increasing number of non-convex approaches including conventional matrix norm optimizing and emerging deep learning models. However, it is hard to optimize the ideal l0-norm or learn the deep models directly and efficiently. Motivated from this challenging process, this thesis proposes two sets of approaches: conventional and deep learning based. For conventional approaches, this thesis proposes a novel online non-convex lp-norm based Robust PCA (OLP-RPCA) approach for matrix decomposition, where 0 < p < 1. OLP-RPCA is developed from the offline version LP-RPCA. A robust face recognition framework is also developed from Robust PCA and sparse coding approaches. More importantly, OLP-RPCA method can achieve real-time performance on large-scale data without parallelizing or implementing on a graphics processing unit. We mathematically and empirically show that our OLP-RPCA algorithm is linear in both the sample dimension and the number of samples. The proposed OLP-RPCA and LP-RPCA approaches are evaluated in various applications including Gaussian/non-Gaussian image denoising, face modeling, real-time background subtraction and video inpainting and compared against numerous state-of-the-art methods to demonstrate the robustness of the algorithms. In addition, this thesis proposes a novel Robust lp-norm Singular Value Decomposition (RP-SVD) method for analyzing two-way functional data. The proposed RP-SVD is formulated as an lp-norm based penalized loss minimization problem. The proposed RP-SVD method is evaluated in four applications, i.e. noise and outlier removal, estimation of missing values, structure from motion reconstruction and facial image reconstruction. For deep learning based approaches, this thesis explores the idea of matrix decomposition via Robust Deep Boltzmann Machines (RDBM), an alternative form of Robust Boltzmann Machines, which aiming at dealing with noise and occlusion for face-related applications, particularly. This thesis proposes an extension to texture modeling in the Deep Appearance Models (DAMs) by using RDBM to enhance its robustness against noise and occlusion. The extended model can cope with occlusion and extreme poses when modeling human faces in 2D image reconstruction. This thesis also introduces new fitting algorithms with occlusion awareness through the mask obtained from the RDBM reconstruction. The proposed approach is evaluated in various applications by using challenging face datasets, i.e. Labeled Face Parts in the Wild (LFPW), Helen, EURECOM and AR databases, to demonstrate its robustness and capabilities

    Algorithms for Multiclass Classification and Regularized Regression

    Get PDF

    Détection de changement par fusion d'images de télédétection de résolutions et modalités différentes

    Get PDF
    La dĂ©tection de changements dans une scĂšne est l’un des problĂšmes les plus complexes en tĂ©lĂ©dĂ©tection. Il s’agit de dĂ©tecter des modifications survenues dans une zone gĂ©ographique donnĂ©e par comparaison d’images de cette zone acquises Ă  diffĂ©rents instants. La comparaison est facilitĂ©e lorsque les images sont issues du mĂȘme type de capteur c’est-Ă -dire correspondent Ă  la mĂȘme modalitĂ© (le plus souvent optique multi-bandes) et possĂšdent des rĂ©solutions spatiales et spectrales identiques. Les techniques de dĂ©tection de changements non supervisĂ©es sont, pour la plupart, conçues spĂ©cifiquement pour ce scĂ©nario. Il est, dans ce cas, possible de comparer directement les images en calculant la diffĂ©rence de pixels homologues, c’est-Ă -dire correspondant au mĂȘme emplacement au sol. Cependant, dans certains cas spĂ©cifiques tels que les situations d’urgence, les missions ponctuelles, la dĂ©fense et la sĂ©curitĂ©, il peut s’avĂ©rer nĂ©cessaire d’exploiter des images de modalitĂ©s et de rĂ©solutions diffĂ©rentes. Cette hĂ©tĂ©rogĂ©nĂ©itĂ© dans les images traitĂ©es introduit des problĂšmes supplĂ©mentaires pour la mise en Ɠuvre de la dĂ©tection de changements. Ces problĂšmes ne sont pas traitĂ©s par la plupart des mĂ©thodes de l’état de l’art. Lorsque la modalitĂ© est identique mais les rĂ©solutions diffĂ©rentes, il est possible de se ramener au scĂ©nario favorable en appliquant des prĂ©traitements tels que des opĂ©rations de rĂ©Ă©chantillonnage destinĂ©es Ă  atteindre les mĂȘmes rĂ©solutions spatiales et spectrales. NĂ©anmoins, ces prĂ©traitements peuvent conduire Ă  une perte d’informations pertinentes pour la dĂ©tection de changements. En particulier, ils sont appliquĂ©s indĂ©pendamment sur les deux images et donc ne tiennent pas compte des relations fortes existant entre les deux images. L’objectif de cette thĂšse est de dĂ©velopper des mĂ©thodes de dĂ©tection de changements qui exploitent au mieux l’information contenue dans une paire d’images observĂ©es, sans condition sur leur modalitĂ© et leurs rĂ©solutions spatiale et spectrale. Les restrictions classiquement imposĂ©es dans l’état de l’art sont levĂ©es grĂące Ă  une approche utilisant la fusion des deux images observĂ©es. La premiĂšre stratĂ©gie proposĂ©e s’applique au cas d’images de modalitĂ©s identiques mais de rĂ©solutions diffĂ©rentes. Elle se dĂ©compose en trois Ă©tapes. La premiĂšre Ă©tape consiste Ă  fusionner les deux images observĂ©es ce qui conduit Ă  une image de la scĂšne Ă  haute rĂ©solution portant l’information des changements Ă©ventuels. La deuxiĂšme Ă©tape rĂ©alise la prĂ©diction de deux images non observĂ©es possĂ©dant des rĂ©solutions identiques Ă  celles des images observĂ©es par dĂ©gradation spatiale et spectrale de l’image fusionnĂ©e. Enfin, la troisiĂšme Ă©tape consiste en une dĂ©tection de changements classique entre images observĂ©es et prĂ©dites de mĂȘmes rĂ©solutions. Une deuxiĂšme stratĂ©gie modĂ©lise les images observĂ©es comme des versions dĂ©gradĂ©es de deux images non observĂ©es caractĂ©risĂ©es par des rĂ©solutions spectrales et spatiales identiques et Ă©levĂ©es. Elle met en Ɠuvre une Ă©tape de fusion robuste qui exploite un a priori de parcimonie des changements observĂ©s. Enfin, le principe de la fusion est Ă©tendu Ă  des images de modalitĂ©s diffĂ©rentes. Dans ce cas oĂč les pixels ne sont pas directement comparables, car correspondant Ă  des grandeurs physiques diffĂ©rentes, la comparaison est rĂ©alisĂ©e dans un domaine transformĂ©. Les deux images sont reprĂ©sentĂ©es par des combinaisons linĂ©aires parcimonieuses des Ă©lĂ©ments de deux dictionnaires couplĂ©s, appris Ă  partir des donnĂ©es. La dĂ©tection de changements est rĂ©alisĂ©e Ă  partir de l’estimation d’un code couplĂ© sous condition de parcimonie spatiale de la diffĂ©rence des codes estimĂ©s pour chaque image. L’expĂ©rimentation de ces diffĂ©rentes mĂ©thodes, conduite sur des changements simulĂ©s de maniĂšre rĂ©aliste ou sur des changements rĂ©els, dĂ©montre les avantages des mĂ©thodes dĂ©veloppĂ©es et plus gĂ©nĂ©ralement de l’apport de la fusion pour la dĂ©tection de changement

    Algorithms for Multiclass Classification and Regularized Regression

    Get PDF
    Multiclass classification and regularized regression problems are very common in modern statistical and machine learning applications. On the one hand, multiclass classification problems require the prediction of class labels: given observations of objects that belong to certain classes, can we predict to which class a new object belongs? On the other hand, the reg
    corecore