35 research outputs found

    Underdetermined DOA Estimation Using MVDR-Weighted LASSO

    Get PDF
    The direction of arrival (DOA) estimation problem is formulated in a compressive sensing (CS) framework, and an extended array aperture is presented to increase the number of degrees of freedom of the array. The ordinary least square adaptable least absolute shrinkage and selection operator (OLS A-LASSO) is applied for the first time for DOA estimation. Furthermore, a new LASSO algorithm, the minimum variance distortionless response (MVDR) A-LASSO, which solves the DOA problem in the CS framework, is presented. The proposed algorithm does not depend on the singular value decomposition nor on the orthogonality of the signal and the noise subspaces. Hence, the DOA estimation can be done without a priori knowledge of the number of sources. The proposed algorithm can estimate up to ((M2−2)/2+M−1)/2 sources using M sensors without any constraints or assumptions about the nature of the signal sources. Furthermore, the proposed algorithm exhibits performance that is superior compared to that of the classical DOA estimation methods, especially for low signal to noise ratios (SNR), spatially-closed sources and coherent scenarios

    Sparse Representations & Compressed Sensing with application to the problem of Direction-of-Arrival estimation.

    Get PDF
    PhDThe significance of sparse representations has been highlighted in numerous signal processing applications ranging from denoising to source separation and the emerging field of compressed sensing has provided new theoretical insights into the problem of inverse systems with sparsity constraints. In this thesis, these advances are exploited in order to tackle the problem of direction-of-arrival (DOA) estimation in sensor arrays. Assuming spatial sparsity e.g. few sources impinging on the array, the problem of DOA estimation is formulated as a sparse representation problem in an overcomplete basis. The resulting inverse problem can be solved using typical sparse recovery methods based on convex optimization i.e. `1 minimization. However, in this work a suite of novel sparse recovery algorithms is initially developed, which reduce the computational cost and yield approximate solutions. Moreover, the proposed algorithms of Polytope Faces Pursuits (PFP) allow for the induction of structured sparsity models on the signal of interest, which can be quite beneficial when dealing with multi-channel data acquired by sensor arrays, as it further reduces the complexity and provides performance gain under certain conditions. Regarding the DOA estimation problem, experimental results demonstrate that the proposed methods outperform popular subspace based methods such as the multiple signal classification (MUSIC) algorithm in the case of rank-deficient data (e.g. presence of highly correlated sources or limited amount of data) for both narrowband and wideband sources. In the wideband scenario, they can also suppress the undesirable effects of spatial aliasing. However, DOA estimation with sparsity constraints has its limitations. The compressed sensing requirement of incoherent dictionaries for robust recovery sets limits to the resolution capabilities of the proposed method. On the other hand, the unknown parameters are continuous and therefore if the true DOAs do not belong to the predefined discrete set of potential locations the algorithms' performance will degrade due to errors caused by mismatches. To overcome this limitation, an iterative alternating descent algorithm for the problem of off-grid DOA estimation is proposed that alternates between sparse recovery and dictionary update estimates. Simulations clearly illustrate the performance gain of the algorithm over the conventional sparsity approach and other existing off-grid DOA estimation algorithms.EPSRC Leadership Fellowship EP/G007144/1; EU FET-Open Project FP7-ICT-225913

    A unified approach to sparse signal processing

    Get PDF
    A unified view of the area of sparse signal processing is presented in tutorial form by bringing together various fields in which the property of sparsity has been successfully exploited. For each of these fields, various algorithms and techniques, which have been developed to leverage sparsity, are described succinctly. The common potential benefits of significant reduction in sampling rate and processing manipulations through sparse signal processing are revealed. The key application domains of sparse signal processing are sampling, coding, spectral estimation, array processing, compo-nent analysis, and multipath channel estimation. In terms of the sampling process and reconstruction algorithms, linkages are made with random sampling, compressed sensing and rate of innovation. The redundancy introduced by channel coding i

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Applications of compressive sensing to direction of arrival estimation

    Get PDF
    Die SchĂ€tzung der Einfallsrichtungen (Directions of Arrival/DOA) mehrerer ebener Wellenfronten mit Hilfe eines Antennen-Arrays ist eine der prominentesten Fragestellungen im Gebiet der Array-Signalverarbeitung. Das nach wie vor starke Forschungsinteresse in dieser Richtung konzentriert sich vor allem auf die Reduktion des Hardware-Aufwands, im Sinne der KomplexitĂ€t und des Energieverbrauchs der EmpfĂ€nger, bei einem vorgegebenen Grad an Genauigkeit und Robustheit gegen Mehrwegeausbreitung. Diese Dissertation beschĂ€ftigt sich mit der Anwendung von Compressive Sensing (CS) auf das Gebiet der DOA-SchĂ€tzung mit dem Ziel, hiermit die KomplexitĂ€t der EmpfĂ€ngerhardware zu reduzieren und gleichzeitig eine hohe Richtungsauflösung und Robustheit zu erreichen. CS wurde bereits auf das DOA-Problem angewandt unter der Ausnutzung der Tatsache, dass eine Superposition ebener Wellenfronten mit einer winkelabhĂ€ngigen Leistungsdichte korrespondiert, die ĂŒber den Winkel betrachtet sparse ist. Basierend auf der Idee wurden CS-basierte Algorithmen zur DOA-SchĂ€tzung vorgeschlagen, die sich durch eine geringe RechenkomplexitĂ€t, Robustheit gegenĂŒber Quellenkorrelation und FlexibilitĂ€t bezĂŒglich der Wahl der Array-Geometrie auszeichnen. Die Anwendung von CS fĂŒhrt darĂŒber hinaus zu einer erheblichen Reduktion der Hardware-KomplexitĂ€t, da weniger EmpfangskanĂ€le benötigt werden und eine geringere Datenmenge zu verarbeiten und zu speichern ist, ohne dabei wesentliche Informationen zu verlieren. Im ersten Teil der Arbeit wird das Problem des Modellfehlers bei der CS-basierten DOA-SchĂ€tzung mit gitterbehafteten Verfahren untersucht. Ein hĂ€ufig verwendeter Ansatz um das CS-Framework auf das DOA-Problem anzuwenden ist es, den kontinuierlichen Winkel-Parameter zu diskreditieren und damit ein Dictionary endlicher GrĂ¶ĂŸe zu bilden. Da die tatsĂ€chlichen Winkel fast sicher nicht auf diesem Gitter liegen werden, entsteht dabei ein unvermeidlicher Modellfehler, der sich auf die SchĂ€tzalgorithmen auswirkt. In der Arbeit wird ein analytischer Ansatz gewĂ€hlt, um den Effekt der Gitterfehler auf die rekonstruierten Spektra zu untersuchen. Es wird gezeigt, dass sich die Messung einer Quelle aus beliebiger Richtung sehr gut durch die erwarteten Antworten ihrer beiden Nachbarn auf dem Gitter annĂ€hern lĂ€sst. Darauf basierend wird ein einfaches und effizientes Verfahren vorgeschlagen, den Gitterversatz zu schĂ€tzen. Dieser Ansatz ist anwendbar auf einzelne Quellen oder mehrere, rĂ€umlich gut separierte Quellen. FĂŒr den Fall mehrerer dicht benachbarter Quellen wird ein numerischer Ansatz zur gemeinsamen SchĂ€tzung des Gitterversatzes diskutiert. Im zweiten Teil der Arbeit untersuchen wir das Design kompressiver Antennenarrays fĂŒr die DOA-SchĂ€tzung. Die Kompression im Sinne von Linearkombinationen der Antennensignale, erlaubt es, Arrays mit großer Apertur zu entwerfen, die nur wenige EmpfangskanĂ€le benötigen und sich konfigurieren lassen. In der Arbeit wird eine einfache Empfangsarchitektur vorgeschlagen und ein allgemeines Systemmodell diskutiert, welches verschiedene Optionen der tatsĂ€chlichen Hardware-Realisierung dieser Linearkombinationen zulĂ€sst. Im Anschluss wird das Design der Gewichte des analogen Kombinations-Netzwerks untersucht. Numerische Simulationen zeigen die Überlegenheit der vorgeschlagenen kompressiven Antennen-Arrays im Vergleich mit dĂŒnn besetzten Arrays der gleichen KomplexitĂ€t sowie kompressiver Arrays mit zufĂ€llig gewĂ€hlten Gewichten. Schließlich werden zwei weitere Anwendungen der vorgeschlagenen AnsĂ€tze diskutiert: CS-basierte VerzögerungsschĂ€tzung und kompressives Channel Sounding. Es wird demonstriert, dass die in beiden Gebieten durch die Anwendung der vorgeschlagenen AnsĂ€tze erhebliche Verbesserungen erzielt werden können.Direction of Arrival (DOA) estimation of plane waves impinging on an array of sensors is one of the most important tasks in array signal processing, which have attracted tremendous research interest over the past several decades. The estimated DOAs are used in various applications like localization of transmitting sources, massive MIMO and 5G Networks, tracking and surveillance in radar, and many others. The major objective in DOA estimation is to develop approaches that allow to reduce the hardware complexity in terms of receiver costs and power consumption, while providing a desired level of estimation accuracy and robustness in the presence of multiple sources and/or multiple paths. Compressive sensing (CS) is a novel sampling methodology merging signal acquisition and compression. It allows for sampling a signal with a rate below the conventional Nyquist bound. In essence, it has been shown that signals can be acquired at sub-Nyquist sampling rates without loss of information provided they possess a sufficiently sparse representation in some domain and that the measurement strategy is suitably chosen. CS has been recently applied to DOA estimation, leveraging the fact that a superposition of planar wavefronts corresponds to a sparse angular power spectrum. This dissertation investigates the application of compressive sensing to the DOA estimation problem with the goal to reduce the hardware complexity and/or achieve a high resolution and a high level of robustness. Many CS-based DOA estimation algorithms have been proposed in recent years showing tremendous advantages with respect to the complexity of the numerical solution while being insensitive to source correlation and allowing arbitrary array geometries. Moreover, CS has also been suggested to be applied in the spatial domain with the main goal to reduce the complexity of the measurement process by using fewer RF chains and storing less measured data without the loss of any significant information. In the first part of the work we investigate the model mismatch problem for CS based DOA estimation algorithms off the grid. To apply the CS framework a very common approach is to construct a finite dictionary by sampling the angular domain with a predefined sampling grid. Therefore, the target locations are almost surely not located exactly on a subset of these grid points. This leads to a model mismatch which deteriorates the performance of the estimators. We take an analytical approach to investigate the effect of such grid offsets on the recovered spectra showing that each off-grid source can be well approximated by the two neighboring points on the grid. We propose a simple and efficient scheme to estimate the grid offset for a single source or multiple well-separated sources. We also discuss a numerical procedure for the joint estimation of the grid offsets of closer sources. In the second part of the thesis we study the design of compressive antenna arrays for DOA estimation that aim to provide a larger aperture with a reduced hardware complexity and allowing reconfigurability, by a linear combination of the antenna outputs to a lower number of receiver channels. We present a basic receiver architecture of such a compressive array and introduce a generic system model that includes different options for the hardware implementation. We then discuss the design of the analog combining network that performs the receiver channel reduction. Our numerical simulations demonstrate the superiority of the proposed optimized compressive arrays compared to the sparse arrays of the same complexity and to compressive arrays with randomly chosen combining kernels. Finally, we consider two other applications of the sparse recovery and compressive arrays. The first application is CS based time delay estimation and the other one is compressive channel sounding. We show that the proposed approaches for sparse recovery off the grid and compressive arrays show significant improvements in the considered applications compared to conventional methods

    Compressive Sensing Based Estimation of Direction of Arrival in Antenna Arrays

    Get PDF
    This thesis is concerned with the development of new compressive sensing (CS) techniques both in element space and beamspace for estimating the direction of arrival of various types of sources, including moving sources as well as fluctuating sources, using one-dimensional antenna arrays. The problem of estimating the angle of arrival of a plane electromagnetic wave is referred to as the direction of arrival (DOA) estimation problem. Such algorithms for estimating DOA in antenna arrays are often used in wireless communication network to increase their capacity and throughput. DOA techniques can be used to design and adapt the directivity of the array antennas. For example, an antenna array can be designed to detect a number of incoming signals and accept signals from certain directions only, while rejecting signals that are declared as interference. This spatio-temporal estimation and filtering capability can be exploited for multiplexing co-channel users and rejecting harmful co-channel interference that may occur because of jamming or multipath effects. In this study, three CS-based DOA estimation methods are proposed, one in the element space (ES), and the other two in the beamspace (BS). The proposed techniques do not require a priori knowledge of the number of sources to be estimated. Further, all these techniques are capable of handling both non-fluctuating and fluctuating source signals as well as moving signals. The virtual array concept is utilized in order to be able to identify more number of sources than the number of the sensors used. In element space, an extended version of the least absolute shrinkage and selection operator (LASSO) algorithm, the adaptable LASSO (A-LASSO), is presented. A-LASSO is utilized to solve the DOA problem in compressive sensing framework. It is shown through extensive simulations that the proposed algorithm outperforms the classical DOA estimation techniques as well as LASSO using a small number of snapshots. Furthermore, it is able to estimate coherent as well as spatially-close sources. This technique is then extended to the case of DOA estimation of the sources in unknown noise fields. In beamspace, two compressive sensing techniques are proposed for DOA estimation, one in full beamspace and the other in multiple beam beamspace. Both these techniques are able to estimate correlated source signals as well as spatially-close sources using a small number of snapshots. Furthermore, it is shown that the computational complexity of the two beamspace-based techniques is much less than that of the element-space based technique. It is shown through simulations that the performance of the DOA estimation techniques in multiple beam beamspace is superior to that of the other two techniques proposed in this thesis, in addition to having the lowest computational complexity. Finally, the feasibility for real-time implementation of the proposed CS-based DOA estimation techniques, both in the element-space and the beamspace, is examined. It is shown that the execution time of the proposed algorithms on Raspberry Pi board are compatible for real-time implementation
    corecore