476 research outputs found

    Behavioural Economics: Classical and Modern

    Get PDF
    In this paper, the origins and development of behavioural economics, beginning with the pioneering works of Herbert Simon (1953) and Ward Edwards (1954), is traced, described and (critically) discussed, in some detail. Two kinds of behavioural economics – classical and modern – are attributed, respectively, to the two pioneers. The mathematical foundations of classical behavioural economics is identified, largely, to be in the theory of computation and computational complexity; the corresponding mathematical basis for modern behavioural economics is, on the other hand, claimed to be a notion of subjective probability (at least at its origins in the works of Ward Edwards). The economic theories of behavior, challenging various aspects of 'orthodox' theory, were decisively influenced by these two mathematical underpinnings of the two theoriesClassical Behavioural Economics, Modern Behavioural Economics, Subjective Probability, Model of Computation, Computational Complexity. Subjective Expected Utility

    Computation in Economics

    Get PDF
    This is an attempt at a succinct survey, from methodological and epistemological perspectives, of the burgeoning, apparently unstructured, field of what is often – misleadingly – referred to as computational economics. We identify and characterise four frontier research fields, encompassing both micro and macro aspects of economic theory, where machine computation play crucial roles in formal modelling exercises: algorithmic behavioural economics, computable general equilibrium theory, agent based computational economics and computable economics. In some senses these four research frontiers raise, without resolving, many interesting methodological and epistemological issues in economic theorising in (alternative) mathematical modesClassical Behavioural Economics, Computable General Equilibrium theory, Agent Based Economics, Computable Economics, Computability, Constructivity, Numerical Analysis

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist's view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called 'Post's Program of Research for Higher Recursion Theory'. Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix

    A Computable Economist’s Perspective on Computational Complexity

    Get PDF
    A computable economist.s view of the world of computational complexity theory is described. This means the model of computation underpinning theories of computational complexity plays a central role. The emergence of computational complexity theories from diverse traditions is emphasised. The unifications that emerged in the modern era was codified by means of the notions of efficiency of computations, non-deterministic computations, completeness, reducibility and verifiability - all three of the latter concepts had their origins on what may be called "Post's Program of Research for Higher Recursion Theory". Approximations, computations and constructions are also emphasised. The recent real model of computation as a basis for studying computational complexity in the domain of the reals is also presented and discussed, albeit critically. A brief sceptical section on algorithmic complexity theory is included in an appendix.

    Computability and Evolutionary Complexity: Markets As Complex Adaptive Systems (CAS)

    Get PDF
    The purpose of this Feature is to critically examine and to contribute to the burgeoning multi disciplinary literature on markets as complex adaptive systems (CAS). Three economists, Robert Axtell, Steven Durlauf and Arthur Robson who have distinguished themselves as pioneers in different aspects of how the thesis of evolutionary complexity pertains to market environments have contributed to this special issue. Axtell is concerned about the procedural aspects of attaining market equilibria in a decentralized setting and argues that principles on the complexity of feasible computation should rule in or out widely held models such as the Walrasian one. Robson puts forward the hypothesis called the Red Queen principle, well known from evolutionary biology, as a possible explanation for the evolution of complexity itself. Durlauf examines some of the claims that have been made in the name of complex systems theory to see whether these present testable hypothesis for economic models. My overview aims to use the wider literature on complex systems to provide a conceptual framework within which to discuss the issues raised for Economics in the above contributions and elsewhere. In particular, some assessment will be made on the extent to which modern complex systems theory and its application to markets as CAS constitutes a paradigm shift from more mainstream economic analysis

    The Epistemology of Simulation, Computation and Dynamics in Economics Ennobling Synergies, Enfeebling 'Perfection'

    Get PDF
    Lehtinen and Kuorikoski ([73]) question, provocatively, whether, in the context of Computing the Perfect Model, economists avoid - even positively abhor - reliance on simulation. We disagree with the mildly qualified affirmative answer given by them, whilst agreeing with some of the issues they raise. However there are many economic theoretic, mathematical (primarily recursion theoretic and constructive) - and even some philosophical and epistemological - infelicities in their descriptions, definitions and analysis. These are pointed out, and corrected; for, if not, the issues they raise may be submerged and subverted by emphasis just on the unfortunate, but essential, errors and misrepresentationsSimulation, Computation, Computable, Analysis, Dynamics, Proof, Algorithm
    • …
    corecore