4 research outputs found

    Algebraic foundations for qualitative calculi and networks

    Full text link
    A qualitative representation ϕ\phi is like an ordinary representation of a relation algebra, but instead of requiring (a;b)ϕ=aϕbϕ(a; b)^\phi = a^\phi | b^\phi, as we do for ordinary representations, we only require that cϕaϕbϕ    ca;bc^\phi\supseteq a^\phi | b^\phi \iff c\geq a ; b, for each cc in the algebra. A constraint network is qualitatively satisfiable if its nodes can be mapped to elements of a qualitative representation, preserving the constraints. If a constraint network is satisfiable then it is clearly qualitatively satisfiable, but the converse can fail. However, for a wide range of relation algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others, a network is satisfiable if and only if it is qualitatively satisfiable. Unlike ordinary composition, the weak composition arising from qualitative representations need not be associative, so we can generalise by considering network satisfaction problems over non-associative algebras. We prove that computationally, qualitative representations have many advantages over ordinary representations: whereas many finite relation algebras have only infinite representations, every finite qualitatively representable algebra has a finite qualitative representation; the representability problem for (the atom structures of) finite non-associative algebras is NP-complete; the network satisfaction problem over a finite qualitatively representable algebra is always in NP; the validity of equations over qualitative representations is co-NP-complete. On the other hand we prove that there is no finite axiomatisation of the class of qualitatively representable algebras.Comment: 22 page

    On the Finite Variable-Occurrence Fragment of the Calculus of Relations with Bounded Dot-Dagger Alternation

    Get PDF
    corecore