759 research outputs found

    The undecidability of arbitrary arrow update logic

    Get PDF
    Arbitrary Arrow Update Logic is a dynamic modal logic with a modality to quantify over arrow updates. Some properties of this logic have already been established, but until now it remained an open question whether the logic's satisfiability problem is decidable. Here, we show by a reduction of the tiling problem that the satisfiability problem of Arbitrary Arrow Update Logic is co-RE hard, and therefore undecidable

    To Be Announced

    Full text link
    In this survey we review dynamic epistemic logics with modalities for quantification over information change. Of such logics we present complete axiomatizations, focussing on axioms involving the interaction between knowledge and such quantifiers, we report on their relative expressivity, on decidability and on the complexity of model checking and satisfiability, and on applications. We focus on open problems and new directions for research

    Satisfiability of Arbitrary Public Announcement Logic with Common Knowledge is Σ11\Sigma^1_1-hard

    Full text link
    Arbitrary Public Announcement Logic with Common Knowledge (APALC) is an extension of Public Announcement Logic with common knowledge modality and quantifiers over announcements. We show that the satisfiability problem of APALC on S5-models, as well as that of two other related logics with quantification and common knowledge, is Σ11\Sigma^1_1-hard. This implies that neither the validities nor the satisfiable formulas of APALC are recursively enumerable. Which, in turn, implies that APALC is not finitely axiomatisable.Comment: In Proceedings TARK 2023, arXiv:2307.0400

    No Finite Model Property for Logics of Quantified Announcements

    Get PDF
    Quantification over public announcements shifts the perspective from reasoning strictly about the results of a particular announcement to reasoning about the existence of an announcement that achieves some certain epistemic goal. Depending on the type of the quantification, we get differ- ent formalisms, the most known of which are arbitrary public announcement logic (APAL), group announcement logic (GAL), and coalition announcement logic (CAL). It has been an open question whether the logics have the finite model property, and in the paper we answer the question negatively. We also discuss how this result is connected to other open questions in the field.publishedVersio

    The Modal Logic of Stepwise Removal

    Get PDF
    We investigate the modal logic of stepwise removal of objects, both for its intrinsic interest as a logic of quantification without replacement, and as a pilot study to better understand the complexity jumps between dynamic epistemic logics of model transformations and logics of freely chosen graph changes that get registered in a growing memory. After introducing this logic (MLSR\textsf{MLSR}) and its corresponding removal modality, we analyze its expressive power and prove a bisimulation characterization theorem. We then provide a complete Hilbert-style axiomatization for the logic of stepwise removal in a hybrid language enriched with nominals and public announcement operators. Next, we show that model-checking for MLSR\textsf{MLSR} is PSPACE-complete, while its satisfiability problem is undecidable. Lastly, we consider an issue of fine-structure: the expressive power gained by adding the stepwise removal modality to fragments of first-order logic

    Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables

    Full text link
    We show that Branching-time temporal logics CTL and CTL*, as well as Alternating-time temporal logics ATL and ATL*, are as semantically expressive in the language with a single propositional variable as they are in the full language, i.e., with an unlimited supply of propositional variables. It follows that satisfiability for CTL, as well as for ATL, with a single variable is EXPTIME-complete, while satisfiability for CTL*, as well as for ATL*, with a single variable is 2EXPTIME-complete,--i.e., for these logics, the satisfiability for formulas with only one variable is as hard as satisfiability for arbitrary formulas.Comment: Prefinal version of the published pape

    Hidden protocols: Modifying our expectations in an evolving world

    Get PDF
    When agents know a protocol, this leads them to have expectations about future observations. Agents can update their knowledge by matching their actual observations with the expected ones. They eliminate states where they do not match. In this paper, we study how agents perceive protocols that are not commonly known, and propose a semantics-driven logical framework to reason about knowledge in such scenarios. In particular, we introduce the notion of epistemic expectation models and a propositional dynamic logic-style epistemic logic for reasoning about knowledge via matching agentsÊ expectations to their observations. It is shown how epistemic expectation models can be obtained from epistemic protocols. Furthermore, a characterization is presented of the effective equivalence of epistemic protocols. We introduce a new logic that incorporates updates of protocols and that can model reasoning about knowledge and observations. Finally, the framework is extended to incorporate fact-changing actions, and a worked-out example is given. © 2013 Elsevier B.V
    corecore