174 research outputs found

    Distributed Synthesis in Continuous Time

    Get PDF
    We introduce a formalism modelling communication of distributed agents strictly in continuous-time. Within this framework, we study the problem of synthesising local strategies for individual agents such that a specified set of goal states is reached, or reached with at least a given probability. The flow of time is modelled explicitly based on continuous-time randomness, with two natural implications: First, the non-determinism stemming from interleaving disappears. Second, when we restrict to a subclass of non-urgent models, the quantitative value problem for two players can be solved in EXPTIME. Indeed, the explicit continuous time enables players to communicate their states by delaying synchronisation (which is unrestricted for non-urgent models). In general, the problems are undecidable already for two players in the quantitative case and three players in the qualitative case. The qualitative undecidability is shown by a reduction to decentralized POMDPs for which we provide the strongest (and rather surprising) undecidability result so far

    Interrupt Timed Automata: verification and expressiveness

    Get PDF
    We introduce the class of Interrupt Timed Automata (ITA), a subclass of hybrid automata well suited to the description of timed multi-task systems with interruptions in a single processor environment. While the reachability problem is undecidable for hybrid automata we show that it is decidable for ITA. More precisely we prove that the untimed language of an ITA is regular, by building a finite automaton as a generalized class graph. We then establish that the reachability problem for ITA is in NEXPTIME and in PTIME when the number of clocks is fixed. To prove the first result, we define a subclass ITA- of ITA, and show that (1) any ITA can be reduced to a language-equivalent automaton in ITA- and (2) the reachability problem in this subclass is in NEXPTIME (without any class graph). In the next step, we investigate the verification of real time properties over ITA. We prove that model checking SCL, a fragment of a timed linear time logic, is undecidable. On the other hand, we give model checking procedures for two fragments of timed branching time logic. We also compare the expressive power of classical timed automata and ITA and prove that the corresponding families of accepted languages are incomparable. The result also holds for languages accepted by controlled real-time automata (CRTA), that extend timed automata. We finally combine ITA with CRTA, in a model which encompasses both classes and show that the reachability problem is still decidable. Additionally we show that the languages of ITA are neither closed under complementation nor under intersection

    On verifying timed hyperproperties

    Get PDF
    We study the satisfiability and model-checking problems for timed hyperproperties specified with HyperMTL, a timed extension of HyperLTL. Depending on whether interleaving of events in different traces is allowed, two possible semantics can be defined for timed hyperproperties: asynchronous and synchronous. While the satisfiability problem can be decided similarly to HyperLTL regardless of the choice of semantics, we show that the model-checking problem, unless the specification is alternation-free, is undecidable even when very restricted timing constraints are allowed. On the positive side, we show that model checking HyperMTL with quantifier alternations is possible under certain conditions in the synchronous semantics, or when there is a fixed bound on the length of the time domain.EP/K026399/1 and EP/P020011/

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    Non-blocking supervisory control for initialised rectangular automata

    Get PDF
    We consider the problem of supervisory control for a class of rectangular automata and more specifically for compact rectangular automata with uniform rectangular activity, i.e. initialised. The supervisory controller is state feedback and disables discrete-event transitions in order to solve the non-blocking forbidden state problem. The non-blocking problem is defined under both strong and weak conditions. For the latter maximally permissive solutions that are computable on a finite quotient space characterised by language equivalence are derived

    History-deterministic Vector Addition Systems

    Full text link
    We consider history-determinism, a restricted form of non-determinism, for Vector Addition Systems with States (VASS) when used as acceptors to recognise languages of finite words. History-determinism requires that the non-deterministic choices can be resolved on-the-fly; based on the past and without jeopardising acceptance of any possible continuation of the input word. Our results show that the history-deterministic (HD) VASS sit strictly between deterministic and non-deterministic VASS regardless of the number of counters. We compare the relative expressiveness of HD systems, and closure-properties of the induced language classes, with coverability and reachability semantics, and with and without Δ\varepsilon-labelled transitions. Whereas in dimension 1, inclusion and regularity remain decidable, from dimension two onwards, HD-VASS with suitable resolver strategies, are essentially able to simulate 2-counter Minsky machines, leading to several undecidability results: It is undecidable whether a VASS is history-deterministic, or if a language equivalent history-deterministic VASS exists. Checking language inclusion between history-deterministic 2-VASS is also undecidable.Comment: This is the full version of a paper published in CONCUR 202

    Utilization of timed automata as a verification tool for real-time security protocols

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 85-92)Text in English; Abstract: Turkish and Englishxi, 92 leavesTimed Automata is an extension to the automata-theoretic approach to the modeling of real time systems that introduces time into the classical automata. Since it has been first proposed by Alur and Dill in the early nineties, it has become an important research area and been widely studied in both the context of formal languages and modeling and verification of real time systems. Timed automata use dense time modeling, allowing efficient model checking of time-sensitive systems whose correct functioning depend on the timing properties. One of these application areas is the verification of security protocols. This thesis aims to study the timed automata model and utilize it as a verification tool for security protocols. As a case study, the Neuman-Stubblebine Repeated Authentication Protocol is modeled and verified employing the time-sensitive properties in the model. The flaws of the protocol are analyzed and it is commented on the benefits and challenges of the model
    • 

    corecore