2,870 research outputs found

    Perspective: network-guided pattern formation of neural dynamics

    Full text link
    The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs, or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings, lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatiotemporal pattern formation and propose a novel perspective for analyzing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics

    Élőlények kollektív viselkedésének statisztikus fizikája = Statistical physics of the collective behaviour of organisms

    Get PDF
    Experiments: We have carried out quantitative experiments on the collective motion of cells as a function of their density. A sharp transition could be observed from the random motility in sparse cultures to the flocking of dense islands of cells. Using ultra light GPS devices developed by us, we have determined the existing hierarchical relations within a flock of 10 homing pigeons. Modelling: From the simulations of our new model of flocking we concluded that the information exchange between particles was maximal at the critical point, in which the interplay of such factors as the level of noise, the tendency to follow the direction and the acceleration of others results in large fluctuations. Analysis: We have proposed a novel link-density based approach to finding overlapping communities in large networks. The algorithm used for the implementation of this technique is very efficient for most real networks, and provides full statistics quickly. Correspondingly, we have developed a by now popular, user-friendly, freely downloadable software for finding overlapping communities. Extending our method to the time-dependent regime, we found that large groups in evolving networks persist for longer if they are capable of dynamically altering their membership, thus, an ability to change the group composition results in better adaptability. We also showed that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime. Experiments: We have carried out quantitative experiments on the collective motion of cells as a function of their density. A sharp transition could be observed from the random motility in sparse cultures to the flocking of dense islands of cells. Using ultra light GPS devices developed by us, we have determined the existing hierarchical relations within a flock of 10 homing pigeons. Modelling: From the simulations of our new model of flocking we concluded that the information exchange between particles was maximal at the critical point, in which the interplay of such factors as the level of noise, the tendency to follow the direction and the acceleration of others results in large fluctuations. Analysis: We have proposed a novel link-density based approach to finding overlapping communities in large networks. The algorithm used for the implementation of this technique is very efficient for most real networks, and provides full statistics quickly. Correspondingly, we have developed a by now popular, user-friendly, freely downloadable software for finding overlapping communities. Extending our method to the time-dependent regime, we found that large groups in evolving networks persist for longer if they are capable of dynamically altering their membership, thus, an ability to change the group composition results in better adaptability. We also showed that knowledge of the time commitment of members to a given community can be used for estimating the community's lifetime

    The brain: What is critical about it?

    Get PDF
    We review the recent proposal that the most fascinating brain properties are related to the fact that it always stays close to a second order phase transition. In such conditions, the collective of neuronal groups can reliably generate robust and flexible behavior, because it is known that at the critical point there is the largest abundance of metastable states to choose from. Here we review the motivation, arguments and recent results, as well as further implications of this view of the functioning brain.Comment: Proceedings of BIOCOMP2007 - Collective Dynamics: Topics on Competition and Cooperation in the Biosciences. Vietri sul Mare, Italy (2007

    Cell Towers as Urban Sensors: Understanding the Strengths and Limitations of Mobile Phone Location Data

    Get PDF
    Understanding urban dynamics and human mobility patterns not only benefits a wide range of real-world applications (e.g., business site selection, public transit planning), but also helps address many urgent issues caused by the rapid urbanization processes (e.g., population explosion, congestion, pollution). In the past few years, given the pervasive usage of mobile devices, call detail records collected by mobile network operators has been widely used in urban dynamics and human mobility studies. However, the derived knowledge might be strongly biased due to the uneven distribution of people’s phone communication activities in space and time. This dissertation research applies different analytical methods to better understand human activity and urban environment, as well as their interactions, mainly based on a new type of data source: actively tracked mobile phone location data. In particular, this dissertation research achieves three main research objectives. First, this research develops visualization and analysis approaches to uncover hidden urban dynamics patterns from actively tracked mobile phone location data. Second, this research designs quantitative methods to evaluate the representativeness issue of call detail record data. Third, this research develops an appropriate approach to evaluate the performance of different types of tracking data in urban dynamics research. The major contributions of this dissertation research include: 1) uncovering the dynamics of stay/move activities and distance decay effects, and the changing human mobility patterns based on several mobility indicators derived from actively tracked mobile phone location data; 2) taking the first step to evaluate the representativeness and effectiveness of call detail record and revealing its bias in human mobility research; and 3) extracting and comparing urban-level population movement patterns derived from three different types of tracking data as well as their pros and cons in urban population movement analysis

    Mining and correlating traffic events from human sensor observations with official transport data using self-organizing-maps

    Get PDF
    Cities are complex systems, where related Human activities are increasingly difficult to explore within. In order to understand urban processes and to gain deeper knowledge about cities, the potential of location-based social networks like Twitter could be used a promising example to explore latent relationships of underlying mobility patterns. In this paper, we therefore present an approach using a geographic self-organizing map (Geo-SOM) to uncover and compare previously unseen patterns from social media and authoritative data. The results, which we validated with Live Traffic Disruption (TIMS) feeds from Transport for London, show that the observed geospatial and temporal patterns between special events (r = 0.73), traffic incidents (r = 0.59) and hazard disruptions (r = 0.41) from TIMS, are strongly correlated with traffic-related, georeferenced tweets. Hence, we conclude that tweets can be used as a proxy indicator to detect collective mobility events and may help to provide stakeholders and decision makers with complementary information on complex mobility processes

    Predictability of conversation partners

    Full text link
    Recent developments in sensing technologies have enabled us to examine the nature of human social behavior in greater detail. By applying an information theoretic method to the spatiotemporal data of cell-phone locations, [C. Song et al. Science 327, 1018 (2010)] found that human mobility patterns are remarkably predictable. Inspired by their work, we address a similar predictability question in a different kind of human social activity: conversation events. The predictability in the sequence of one's conversation partners is defined as the degree to which one's next conversation partner can be predicted given the current partner. We quantify this predictability by using the mutual information. We examine the predictability of conversation events for each individual using the longitudinal data of face-to-face interactions collected from two company offices in Japan. Each subject wears a name tag equipped with an infrared sensor node, and conversation events are marked when signals are exchanged between sensor nodes in close proximity. We find that the conversation events are predictable to some extent; knowing the current partner decreases the uncertainty about the next partner by 28.4% on average. Much of the predictability is explained by long-tailed distributions of interevent intervals. However, a predictability also exists in the data, apart from the contribution of their long-tailed nature. In addition, an individual's predictability is correlated with the position in the static social network derived from the data. Individuals confined in a community - in the sense of an abundance of surrounding triangles - tend to have low predictability, and those bridging different communities tend to have high predictability.Comment: 38 pages, 19 figure

    Affordances of Historic Urban Landscapes: an Ecological Understanding of Human Interaction with the Past

    Get PDF
    Heritage has been defined differently in European contexts. Despite differences, a common challenge for historic urban landscape management is the integration of tangible and intangible heritage. Integration demands an active view of perception and human-landscape interaction where intangible values are linked to specific places and meanings are attached to particular cultural practices and socio-spatial organisation. Tangible and intangible values can be examined as part of a system of affordances (potentialities) a place, artefact or cultural practice has to offer. This paper discusses how an ‘affordance analysis’ may serve as a useful tool for the management of historic urban landscapes

    Depicting urban boundaries from a mobility network of spatial interactions: A case study of Great Britain with geo-located Twitter data

    Full text link
    Existing urban boundaries are usually defined by government agencies for administrative, economic, and political purposes. Defining urban boundaries that consider socio-economic relationships and citizen commute patterns is important for many aspects of urban and regional planning. In this paper, we describe a method to delineate urban boundaries based upon human interactions with physical space inferred from social media. Specifically, we depicted the urban boundaries of Great Britain using a mobility network of Twitter user spatial interactions, which was inferred from over 69 million geo-located tweets. We define the non-administrative anthropographic boundaries in a hierarchical fashion based on different physical movement ranges of users derived from the collective mobility patterns of Twitter users in Great Britain. The results of strongly connected urban regions in the form of communities in the network space yield geographically cohesive, non-overlapping urban areas, which provide a clear delineation of the non-administrative anthropographic urban boundaries of Great Britain. The method was applied to both national (Great Britain) and municipal scales (the London metropolis). While our results corresponded well with the administrative boundaries, many unexpected and interesting boundaries were identified. Importantly, as the depicted urban boundaries exhibited a strong instance of spatial proximity, we employed a gravity model to understand the distance decay effects in shaping the delineated urban boundaries. The model explains how geographical distances found in the mobility patterns affect the interaction intensity among different non-administrative anthropographic urban areas, which provides new insights into human spatial interactions with urban space.Comment: 32 pages, 7 figures, International Journal of Geographic Information Scienc
    corecore