4,863 research outputs found

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Therapeutic touch and therapeutic alliance in pediatric care and neonatology: An active inference framework

    Get PDF
    Therapeutic affective touch has been recognized as essential for survival, nurturing supportive interpersonal interactions, accelerating recovery—including reducing hospitalisations, and promoting overall health and building robust therapeutic alliances. Through the lens of active inference, we present an integrative model, combining therapeutic touch and communication, to achieve biobehavioural synchrony. This model speaks to how the brain develops a generative model required for recovery, developing successful therapeutic alliances, and regulating allostasis within paediatric manual therapy. We apply active inference to explain the neurophysiological and behavioural mechanisms that underwrite the development and maintenance of synchronous relationships through touch. This paper foregrounds the crucial role of therapeutic touch in developing a solid therapeutic alliance, the clinical effectiveness of paediatric care, and triadic synchrony between health care practitioner, caregiver, and infant in a variety of clinical situations. We start by providing a brief overview of the significance and clinical role of touch in the development of social interactions in infants; facilitating a positive therapeutic alliance and restoring homeostasis through touch to allow a more efficient process of allostatic regulation. Moreover, we explain the role of CT tactile afferents in achieving positive clinical outcomes and updating prior beliefs. We then discuss how touch is implemented in treatment sessions to promote cooperative interactions in the clinic and facilitate theory of mind. This underwrites biobehavioural synchrony, epistemic trust, empathy, and the resolution of uncertainty. The ensuing framework is underpinned by a critical application of the active inference framework to the fields of pediatrics and neonatology

    The weight of emotions in decision-making: how fearful and happy facial stimuli modulate action readiness of goal-directed actions

    Get PDF
    Modern theories of behavioral control converge with the idea that goal-directed/voluntary behaviors are intimately tied to the evaluation of resources. Of key relevance in the decision-making processes that underlie action selection are those stimuli that bear emotional content. However, even though it is acknowledged that emotional information affects behavioral control, the exact way in which emotions impact on action planning is largely unknown. To clarify this issue, I gave an emotional version of a go/no-go task to healthy participants, in which they had to perform the same arm reaching movement when pictures of fearful or happy faces were presented, and to withhold it when pictures of faces with neutral expressions were presented. This task allows for the investigation of the effects of emotional stimuli when they are task-relevant without conflating movement planning with target detection and task switching. It was found that both the reaction times (RTs) and the percentages of errors increased when the go-signal was the image of a fearful looking face, as opposed to when the go-signal was a happy looking face. Importantly, to control for the role of the features of the stimuli, I ran a control task in which the same pictures were shown; however, participants had to move/withhold the commanded movement according to gender, disregarding the emotional valence. In this context, the differences between RTs and error percentages between the fearful and happy faces disappeared. On the one hand, these results suggest that fearful facial stimuli are likely to capture and hold attention more strongly than faces that express happiness, which could serve to increase vigilance for detecting a potential threat in an observer's environment. On the other hand, they also suggest that the influence of fearful facial stimuli is not automatic, but it depends on the task requirements

    Investigating Social Haptic Illusions for Tactile Stroking (SHIFTS)

    Full text link
    A common and effective form of social touch is stroking on the forearm. We seek to replicate this stroking sensation using haptic illusions. This work compares two methods that provide sequential discrete stimulation: sequential normal indentation and sequential lateral skin-slip using discrete actuators. Our goals are to understand which form of stimulation more effectively creates a continuous stroking sensation, and how many discrete contact points are needed. We performed a study with 20 participants in which they rated sensations from the haptic devices on continuity and pleasantness. We found that lateral skin-slip created a more continuous sensation, and decreasing the number of contact points decreased the continuity. These results inform the design of future wearable haptic devices and the creation of haptic signals for effective social communication.Comment: To be published in IEEE Haptics Symposium 202

    Calming Effects of Touch in Human, Animal, and Robotic Interaction—Scientific State-of-the-Art and Technical Advances

    Get PDF
    Small everyday gestures such as a tap on the shoulder can affect the way humans feel and act. Touch can have a calming effect and alter the way stress is handled, thereby promoting mental and physical health. Due to current technical advances and the growing role of intelligent robots in households and healthcare, recent research also addressed the potential of robotic touch for stress reduction. In addition, touch by non-human agents such as animals or inanimate objects may have a calming effect. This conceptual article will review a selection of the most relevant studies reporting the physiological, hormonal, neural, and subjective effects of touch on stress, arousal, and negative affect. Robotic systems capable of non-social touch will be assessed together with control strategies and sensor technologies. Parallels and differences of human-to-human touch and human-to-non-human touch will be discussed. We propose that, under appropriate conditions, touch can act as (social) signal for safety, even when the interaction partner is an animal or a machine. We will also outline potential directions for future research and clinical relevance. Thereby, this review can provide a foundation for further investigations into the beneficial contribution of touch by different agents to regulate negative affect and arousal in humans

    Therapeutic touch and therapeutic alliance in pediatric care and neonatology: An active inference framework

    Get PDF
    Therapeutic affective touch has been recognized as essential for survival, nurturing supportive interpersonal interactions, accelerating recovery—including reducing hospitalisations, and promoting overall health and building robust therapeutic alliances. Through the lens of active inference, we present an integrative model, combining therapeutic touch and communication, to achieve biobehavioural synchrony. This model speaks to how the brain develops a generative model required for recovery, developing successful therapeutic alliances, and regulating allostasis within paediatric manual therapy. We apply active inference to explain the neurophysiological and behavioural mechanisms that underwrite the development and maintenance of synchronous relationships through touch. This paper foregrounds the crucial role of therapeutic touch in developing a solid therapeutic alliance, the clinical effectiveness of paediatric care, and triadic synchrony between health care practitioner, caregiver, and infant in a variety of clinical situations. We start by providing a brief overview of the significance and clinical role of touch in the development of social interactions in infants; facilitating a positive therapeutic alliance and restoring homeostasis through touch to allow a more efficient process of allostatic regulation. Moreover, we explain the role of CT tactile afferents in achieving positive clinical outcomes and updating prior beliefs. We then discuss how touch is implemented in treatment sessions to promote cooperative interactions in the clinic and facilitate theory of mind. This underwrites biobehavioural synchrony, epistemic trust, empathy, and the resolution of uncertainty. The ensuing framework is underpinned by a critical application of the active inference framework to the fields of pediatrics and neonatology

    A new animal model of paradoxical kinesia induced by 50-kHz ultrasonic vocalizations playback in rats: implications of the inferior colliculus

    Get PDF
    Motor impairments such as bradykinesia (slowness of movement) or akinesia (loss of movement) are among the most troubling symptoms seen in Parkinson’s disease (PD) patients. PD patients exposed to visual or auditory stimuli might be able to exhibit normal motor responses, experiencing a phenomenon named paradoxical kinesia. Paradoxical kinesia is a sudden transient ability of akinetic patients to perform normal motor tasks. This phenomenon is known to depend on the patient’s emotional state and external stimuli; however, the neural mechanisms underlying it are unknown. Here, a new animal model was developed (Study I) to investigate paradoxical kinesia by “awakening” cataleptic rats through presenting appetitive 50-kHz ultrasonic vocalizations (USV) which are typical for social situations with positive valence, like juvenile play or sexual encounters (“rat laughter”). Rats received systemic haloperidol to induce catalepsy which was assessed by means of the bar test. During that test, 50-kHz USV, 22-kHz USV or acoustic control stimuli were played back and compared to SILENCE. Only the 50-kHz USV was able to induce paradoxical kinesia in cataleptic rats. In addition, the role of the inferior colliculus (IC) was investigated in paradoxical kinesia induced by 50-kHz USV (Study II), since the IC not only serves as an acoustic relay station, but also modulates haloperidol-induced catalepsy. Glutamatergic and GABAergic neurotransmissions were selected, with rats receiving intracollicular NMDA, a glutamatergic agonist, or diazepam, a GABA/benzodiazepine agonist, 10 min before systemic haloperidol. During the catalepsy test rats were exposed to playback of 50-kHz USV and control stimuli. The results show that playback of 50-kHz USV induced paradoxical kinesia in rats which had systemically received haloperidol and vehicle into the IC. This paradoxical kinesia effect of 50-kHz USV playback on haloperidol-induced catalepsy was prevented by intracollicular NMDA administration. Although diazepam microinjected into the IC potentiated haloperidol-induced catalepsy, it did not affect the response to 50-kHz USV playback. Therefore, the NMDA receptor agonist suppressed the effectiveness of 50-kHz USV playback, whereas diazepam did not. These findings suggest that the IC is a key structure involved in paradoxical kinesia, with relevant processes being glutamatergic rather than GABAergic. This animal model thus appears useful for uncovering neural mechanisms of paradoxical kinesia and it might help to identify novel therapeutic targets for PD

    Dopaminergic and opioidergic regulation during anticipation and consumption of social and nonsocial rewards

    Get PDF
    The observation of animal orofacial and behavioral reactions has played a fundamental role in research on reward but is seldom assessed in humans. Healthy volunteers (N = 131) received 400 mg of the dopaminergic antagonist amisulpride, 50 mg of the opioidergic antagonist naltrexone, or placebo. Subjective ratings, physical effort, and facial reactions to matched primary social (affective touch) and nonsocial (food) rewards were assessed. Both drugs resulted in lower physical effort and greater negative facial reactions during reward anticipation, especially of food rewards. Only opioidergic manipulation through naltrexone led to a reduction in positive facial reactions to liked rewards during reward consumption. Subjective ratings of wanting and liking were not modulated by either drug. Results suggest that facial reactions during anticipated and experienced pleasure rely on partly different neurochemical systems, and also that the neurochemical bases for food and touch rewards are not identical
    • …
    corecore