1,990 research outputs found

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Age Sensitivity of Face Recognition Algorithms

    Get PDF
    This paper investigates the performance degradation of facial recognition systems due to the influence of age. A comparative analysis of verification performance is conducted for four subspace projection techniques combined with four different distance metrics. The experimental results based on a subset of the MORPH-II database show that the choice of subspace projection technique and associated distance metric can have a significant impact on the performance of the face recognition system for particular age groups

    Gradient-orientation-based PCA subspace for novel face recognition

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Face recognition is an interesting and a challenging problem that has been widely studied in the field of pattern recognition and computer vision. It has many applications such as biometric authentication, video surveillance, and others. In the past decade, several methods for face recognition were proposed. However, these methods suffer from pose and illumination variations. In order to address these problems, this paper proposes a novel methodology to recognize the face images. Since image gradients are invariant to illumination and pose variations, the proposed approach uses gradient orientation to handle these effects. The Schur decomposition is used for matrix decomposition and then Schurvalues and Schurvectors are extracted for subspace projection. We call this subspace projection of face features as Schurfaces, which is numerically stable and have the ability of handling defective matrices. The Hausdorff distance is used with the nearest neighbor classifier to measure the similarity between different faces. Experiments are conducted with Yale face database and ORL face database. The results show that the proposed approach is highly discriminant and achieves a promising accuracy for face recognition than the state-of-the-art approaches
    • …
    corecore